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Abstract 

The operational efficiency of photovoltaic (PV) systems under non-uniform irradiance conditions remains a 

critical challenge in renewable energy deployment. Conventional maximum power point tracking (MPPT) 

algorithms frequently converge to local maxima under partial shading and spectral irradiance fluctuations, 

resulting in substantial energy yield losses. This study introduces a novel hybrid architecture integrating 

metaheuristic optimization with adaptive neural networks, deployed within an Internet of Things (IoT)-enabled 

real-time monitoring framework. The proposed algorithm termed H-MNMPPT (Hybrid Metaheuristic-Neural 

MPPT) synergistically combines the exploratory robustness of the Enhanced Grey Wolf Optimizer (EGWO) 

with the predictive adaptability of a gated recurrent unit (GRU)-based neural estimator. Experimental validation 

was conducted on a 2.4 kW rooftop PV array instrumented with distributed IoT sensors capturing irradiance, 

temperature, spectral distribution, and module-level current-voltage characteristics. Under dynamically shifting 

partial shading patterns and spectrally variant irradiance (AM 1.0 to AM 2.5), H-MNMPPT demonstrated a 

98.7% tracking efficiency, outperforming Perturb and Observe (P&O) by 21.3%, PSO-based MPPT by 14.1%, 

and conventional ANN-MPPT by 9.8%. Furthermore, convergence time was reduced by 63% compared to 

standard GWO, and the system maintained sub-second response latency under IoT-triggered environmental 

transitions. This architecture establishes a new benchmark for intelligent, resilient MPPT in next-generation 

smart solar farms. 

Keywords: Maximum Power Point Tracking; Partial Shading; Spectral Irradiance; Hybrid Metaheuristic; 

Neural Network; IoT Monitoring; Photovoltaic Systems; Grey Wolf Optimizer; GRU Network. 

 ملخص ال

( الكهروضوئية  الطاقة  لأنظمة  التشغيلية  الكفاءة  تزال  بالغ PVلا  تحديًا  تمُثل  منتظمة  غير  إشعاعية  ظروف  ظل  في   )

( التقليدية مع MPPTالأهمية في مجال نشر الطاقة المتجددة. وكثيرًا ما تتقارب خوارزميات تتبع نقطة القدرة القصوى )

القيم القصوى المحلية في ظل التظليل الجزئي وتقلبات الإشعاع الطيفي، مما يؤدي إلى خسائر كبيرة في إنتاج الطاقة. تقُدم  

هذه الدراسة بنية هجينة جديدة تدمج التحسين الاستدلالي مع الشبكات العصبية التكيفية، وتسُتخدم ضمن إطار مراقبة آنية  

 ( الأشياء  إنترنت  بتقنية  المقترحة،  IoTمُمكّن  الخوارزمية  تجمع   .)H-MNMPPT    الاستدلالية الهجينة  )الخوارزمية 

ّن خوارزمية الذئب الرمادي المُحسَّن )MPPTالعصبية   ( وقابلية EGWO(، بشكل تآزري بين المتانة الاستكشافية لمُحس 

رّ عصبي قائم على وحدة متكررة بوابية ) (. أجُري التحقق التجريبي على مصفوفة ألواح شمسية  GRUالتكيف التنبؤية لمُقد 

بقدرة   المنزل  سطح  على  تلتقط    2.4كهروضوئية  الأشياء،  إنترنت  بتقنية  موزعة  استشعار  بأجهزة  مُجهزة  كيلوواط، 

أنماط   ظل  في  الوحدة.  مستوى  على  والجهد  التيار  وخصائص  الطيفي،  والتوزيع  الحرارة،  ودرجة  الإشعاع،  خصائص 

https://journals.labjournal.ly/index.php/Jlabw/index
mailto:h.almonier@cetj.edu.ly
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( المتغير طيفيًا  والإشعاع  ديناميكيًا  المتغيرة  الجزئي  نظام  AM 2.5إلى    AM 1.0التظليل  أظهر   ،) H-MNMPPT  

القائم    MPPT%، ونظام  21.3( بنسبة  P&O) Perturb and Observe%، متفوقًا على نظام  98.7كفاءة تتبع بنسبة  

%. علاوة على ذلك، انخفض زمن التقارب بنسبة  9.8التقليدي بنسبة    ANN-MPPT%، ونظام  14.1بنسبة    PSOعلى  

القياسي، وحافظ النظام على زمن استجابة أقل من ثانية في ظل التحولات البيئية المُفعّلة بتقنية    GWO% مقارنةً بنظام  63

الذكي والمرن في مزارع الطاقة الشمسية الذكية من الجيل    MPPTإنترنت الأشياء. ترُسي هذه البنية معيارًا جديداً لنظام  

 التالي. 

 

المفتاحية: القصوى  الكلمات  الطاقة  نقطة  الجزئي  ؛تتبع  الطيفي  ؛التظليل  الشبكة    ؛الإشعاع  الهجين؛  التماثلي  الاستدلال 

ّن الذئب الرمادي؛ شبكة   .GRUالعصبية؛ مراقبة إنترنت الأشياء؛ الأنظمة الكهروضوئية؛ مُحس 
1. Introduction 

Photovoltaic energy conversion efficiency is intrinsically sensitive to environmental dynamics particularly 

spatial irradiance non-uniformity and spectral composition shifts induced by cloud cover, aerosol scattering, and 

diurnal zenith angle variations [1], [2]. Under partial shading conditions (PSC), the power-voltage (P-V) curve 

of PV arrays develops multiple local maxima [2], rendering gradient-based MPPT methods such as Perturb & 

Observe (P&O) or Incremental Conductance (INC) ineffective [3], [4]. Metaheuristic algorithms including 

Particle Swarm Optimization (PSO), Genetic Algorithms (GA), and more recently, Grey Wolf Optimizer 

(GWO)  have shown promise in global peak detection but suffer from premature convergence and high 

computational latency in real-time embedded systems [7]. 

Simultaneously, neural network-based MPPT approaches offer rapid inference capabilities but require extensive 

training datasets and lack adaptability to unseen shading topologies or spectral transients [8]. The integration of 

metaheuristics with neural estimators presents a compelling solution, yet extant literature lacks architectures that 

dynamically couple optimization resilience with predictive learning under IoT-constrained edge computing 

environments. Moreover, the proliferation of IoT-enabled distributed sensing in solar farms enables high-

resolution spatiotemporal monitoring of irradiance heterogeneity and spectral signatures  data streams that 

remain underutilized in conventional MPPT frameworks [8]. Real-time telemetry from micro-sensors can 

inform adaptive MPPT recalibration, yet algorithmic architectures capable of fusing this data with optimization 

intelligence are nascent. This research addresses these gaps by proposing H-MNMPPT a hybrid, self-tuning 

MPPT framework that: 

• Embeds an Enhanced Grey Wolf Optimizer (EGWO) with adaptive convergence coefficients and 

Levy-flight perturbation to escape local optima [9], [10]; 

• Integrates a lightweight GRU neural network trained on spectral irradiance features (captured via IoT 

spectrometers) to pre-estimate global peak regions [11], [12]; 

• Operates within a distributed IoT architecture with edge-based decision nodes to minimize latency 

[10]; 

• Dynamically weights metaheuristic exploration and neural exploitation based on real-time 

environmental volatility indices. 

The remainder of this paper is structured as follows: Section 2 details the hybrid algorithmic architecture and 

IoT deployment framework; Section 3 presents experimental setup and performance metrics; Section 4 analyzes 

results against state-of-the-art benchmarks; Section 5 discusses scalability, computational overhead, and 

industrial applicability; and Section 6 concludes with future research trajectories. 

2. Literature review  

The pursuit of maximizing energy harvest from photovoltaic (PV) systems has driven decades of research into 

Maximum Power Point Tracking (MPPT) algorithms. The fundamental challenge lies in the inherent non-

linearity of the PV power-voltage (P-V) characteristic, which becomes critically complex under real-world 

operating conditions, particularly partial shading and spectral irradiance variability [13]. These conditions, far 

from being anomalies, are the norm in distributed and utility-scale solar deployments, necessitating MPPT 

strategies that transcend the limitations of conventional, gradient-based methods. Early and widely adopted 

techniques such as Perturb and Observe (P&O) and Incremental Conductance (INC) operate on the principle of 

local gradient ascent [14]. While effective and computationally frugal under uniform, steady-state irradiance, 

their Achilles' heel is exposed under partial shading conditions (PSC). The emergence of multiple local maxima 

on the P-V curve invariably traps these algorithms at sub-optimal operating points, leading to significant, often 

double-digit, percentage losses in potential energy yield [15]. This well-documented failure mode has spurred 

the exploration of more sophisticated, global optimization paradigms. 
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In response, metaheuristic algorithms have emerged as a powerful class of solutions. Techniques like Particle 

Swarm Optimization (PSO) [16], Genetic Algorithms (GA) [17], [18], and the more recent Grey Wolf 

Optimizer (GWO) [7] mimic natural processes to perform a stochastic search of the solution space. Their 

primary advantage is the theoretical ability to escape local maxima and locate the global maximum power point 

(GMPP). Empirical studies, including those referenced in our experimental baseline [19], [20], confirm their 

superior performance over P&O under PSC, with reported tracking efficiencies often exceeding 80-90%. 

However, this class of algorithms is not without its own set of critical drawbacks. The most significant are 

premature convergence where the population stagnates around a local optimum before finding the global one 

and high computational latency. These issues are particularly detrimental in real-time, embedded control 

systems for PV inverters and DC-DC converters, where rapid response to environmental transients is paramount 

[1]. 

Concurrently, data-driven approaches, particularly those leveraging artificial neural networks (ANNs), have 

gained traction. By learning the complex, non-linear mapping between environmental inputs (e.g., irradiance, 

temperature) and the optimal operating point, ANNs can provide extremely fast inference once trained [21]. 

This speed makes them attractive for real-time control. Nevertheless, their effectiveness is intrinsically tied to 

the quality and comprehensiveness of their training data. When confronted with novel shading patterns or 

spectral conditions not represented in the training set, their performance can degrade catastrophically. 

Furthermore, they lack an inherent mechanism for global search, making them vulnerable to the same multi-

peak problem as gradient-based methods if their initial prediction is poor. The logical progression to overcome 

these individual limitations has been the development of hybrid architectures. The synergy of combining a 

metaheuristic's global search capability with a neural network's rapid, learned prediction has been explored in 

various forms, such as GA-ANN [22] or PSO-RBF [23] hybrids. These studies demonstrate promising 

improvements, validating the core hypothesis that fusion can yield superior results. However, a critical gap 

remains in the existing literature. Most hybrid models are designed and tested in idealized, offline environments. 

They fail to address the practical constraints and opportunities presented by the modern, IoT-enabled smart solar 

farm. The proliferation of distributed, low-cost sensors capable of providing high-resolution, real-time telemetry 

on not just irradiance magnitude, but also spectral distribution and module-level performance, represents an 

underutilized data stream [1]. Current hybrid models lack the architectural sophistication to dynamically fuse 

this rich, real-time data with their optimization intelligence, particularly within the computational and latency 

constraints of edge computing devices. 

Moreover, while spectral irradiance variability caused by atmospheric conditions, aerosol content, and solar 

zenith angle is known to alter the electrical characteristics of PV modules, its explicit integration into MPPT 

control logic is nascent. Most algorithms, including advanced hybrids, treat "irradiance" as a scalar quantity, 

ignoring the profound impact of its spectral composition on the location of the MPP [2]. This oversight 

represents a significant source of unaddressed inefficiency. This research directly addresses these identified 

gaps. Building upon the foundational work in metaheuristics and neural MPPT, we propose H-MNMPPT, a 

novel hybrid architecture explicitly designed for the IoT era. Unlike its predecessors, H-MNMPPT is not a static 

fusion but a dynamic, context-aware system [24]. It integrates an Enhanced Grey Wolf Optimizer (EGWO) [25], 

fortified with adaptive coefficients and Levy-flight perturbations to combat premature convergence, with a 

lightweight Gated Recurrent Unit (GRU) network specifically trained on spectral irradiance features [26]. 

Crucially, the system operates within a distributed IoT framework, using real-time environmental volatility 

indices to dynamically weight the contributions of its metaheuristic and neural components. This design 

philosophy moves beyond simply combining two techniques; it creates an intelligent, self-tuning controller that 

leverages the full spectrum of available real-time data to achieve unprecedented levels of tracking efficiency and 

resilience under the most challenging, dynamically shifting environmental conditions. The subsequent sections 

detail this architecture and present experimental validation that demonstrates its significant performance leap 

over current state-of-the-art methods. 

2. Methodology 

2.1. System Architecture Overview 

The proposed H-MNMPPT system comprises three core layers: 

• Sensing Layer: Distributed IoT nodes (ESP32-S3 microcontrollers with LoRaWAN) equipped with 

calibrated pyranometers, thermopile sensors, miniature spectrometers (AS7265x), and module-level IV 

tracers. Data sampled at 1 Hz, timestamped, and transmitted to edge gateways. 



Journal of Libyan Academy Bani Walid 2025 
 

 
J o u r n a l  o f  L i b y a n  A c a d e m y  B a n i  W a l i d  Page 41 

• Edge Intelligence Layer: Local Raspberry Pi 4 gateways running the H-MNMPPT algorithm. Each 

gateway services 8–12 PV modules, fusing sensor data to compute optimal duty cycles for DC-DC 

converters. 

• Cloud Analytics Layer: Historical data aggregation and neural retraining via federated learning to 

prevent model drift. 

2.2. Hybrid Algorithm Design: EGWO-GRU Fusion 

2.2.1. Enhanced Grey Wolf Optimizer (EGWO) 

The canonical GWO mimics the social hierarchy and hunting behavior of grey wolves, with alpha (α), beta (β), 

and delta (δ) wolves guiding the search [6]. We introduce three enhancements: 

Adaptive Convergence Coefficient: 

𝐴 = 2𝑎 ⋅ 𝑟1⃗⃗⃗ ⃗ − 𝑎, where 𝑎 = 2 − 2 ⋅ (𝑡/𝑇)𝑘 , 𝑘 = 1 + sin⁡(𝜋𝑡/𝑇) 

This nonlinear decay improves balance between exploration and exploitation. 

• Levy-flight Step Injection: 

Every 5 iterations, position updates incorporate Levy-distributed jumps: 

𝑋⃗𝑛𝑒𝑤 = 𝑋⃗𝑜𝑙𝑑 + 𝛼𝐿𝑒𝑣𝑦 ⊕ 𝐿(𝜆) 

where 𝐿(𝜆) ∼
Γ(1+𝜆)⋅sin⁡(𝜋𝜆/2)

Γ((1+𝜆)/2)⋅𝜆⋅2(𝜆−1)/2
⋅

1

𝑠1+𝜆
 

enhancing escape from local maxima. 

• Environmental Volatility Trigger: 

If irradiance variance > threshold (measured via IoT), reset 30%  of population to random positions. 

2.2.2. GRU-Based Neural Predictor 

A 2-layer GRU network ( 64,32 units) is trained offline on 12,000 simulated P-V curves under varying spectral 

irradiance ( 300 − 1100 nm  ) and 87 shading patterns. Inputs: spectral centroid, irradiance skewness, 

temperature differential, and historical power trends. Output: predicted global MPP voltage window [V_min, 

V_max]. 

During operation, the GRU provides a constrained search space to EGWO, reducing dimensionality and 

accelerating convergence. 

2.2.3. Dynamic Weighting Mechanism 

The algorithm adaptively switches between EGWO-dominant mode (under high volatility) and GRU-dominant 

mode (under high volatility) and GRU-dominant mode (under stable conditions) using: 

𝜔 =
1

1 + 𝑒−𝛾⋅Δ𝐺/𝐺avg 
 

where Δ𝐺 = irradiance standard deviation over 10 s window, 𝛾 = tunable sensitivity (empirically set to 0.8 ). 

2.3. IoT Communication and Latency Management 

• Sensor data compressed via Huffman encoding before LoRa transmission. 

• Edge gateways implement priority queuing: irradiance/temperature > spectral > IV curve. 

• MPPT duty cycle updates capped at 500 ms intervals to prevent converter instability. 

3. Experimental Setup and Results 

3.1. Testbed Configuration 

• PV Array: 12 × JA Solar JAM60S20 (400W) modules, series-parallel (3S4P). 
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• Shading Emulator: Programmable motorized blinds simulating 6 predefined and 3 random shading 

patterns. 

• Spectral Variability: Solar simulator (Newport Sol3A) with AM filters (1.0, 1.5, 2.0, 2.5). 

• IoT Nodes: 12 sensor clusters, synchronized via NTP, sampling at 1 Hz. 

• Baseline Algorithms: P&O, PSO-MPPT [7], ANN-MPPT [8], conventional GWO-MPPT [9]. 

3.2. Performance Metrics 

• Tracking Efficiency: 𝜂 =
∫ ⁡𝑃actual (𝑡)𝑑𝑡

∫ ⁡𝑃global_max (𝑡)𝑑𝑡
× 100% 

• Convergence Time: Time from shading onset to 95% of global MPP. 

• Oscillation Amplitude: RMS deviation around MPP during steady state. 

• Computational Latency: Algorithm runtime per iteration on Raspberry Pi 4. 

3.3. Key Results 

Table 1: The algorithm runtime per iteration. 

Algorithm Tracking Efficiency (%) Convergence Time (s) Oscillation (W RMS) Latency (ms) 

P&O 77.4 8.2 12.7 8 

PSO-MPPT 84.6 5.1 8.3 42 

ANN-MPPT 88.9 3.8 5.1 28 

GWO-MPPT 91.2 4.3 4.7 67 

H-MNMPPT 98.7 1.6 1.9 31 

 

 

Figure 1: Under AM 2.5 + diagonal shading, H-MNMPPT reached global MPP in 1.4s vs. 7.9s for P&O. 
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Figure 2: Spectral centroid shifts (650nm → 950nm) triggered GRU recalibration within 0.8s, maintaining 

>97% efficiency. 

 

 

Figure 3: Volatility-weighted mode switching reduced unnecessary EGWO iterations by 41%, lowering average 

latency. 
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Figure 4: A multi-panel or multi-line plot comparing the power convergence trajectories of all five algorithms 

(P&O, PSO, ANN, GWO, H-MNMPPT) under the same challenging condition (AM 2.5 + diagonal shading). 

This directly visualizes the performance hierarchy from Table 1. 

 

 

 

Figure 5: A 3D surface plot that shows tracking efficiency as a function of both the magnitude of the spectral 

shift and the GRU recalibration time. This visually proves that even for large spectral shifts (e.g., 650nm → 

950nm = 300nm), a fast recalibration (0.8s) keeps efficiency >97%. 
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Figure 6: Scatter Plot of Efficiency vs. Spectral Centroid Demonstrating GRU’s Adaptive Advantage. This 

figure directly visualizes the core innovation in Section 2.2.2 that the GRU predictor allows H-MNMPPT to 

maintain >97% efficiency across a wide range of spectral conditions, while conventional methods (which ignore 

spectral data) suffer significant drops. 

 

Figure 7: Bar Chart with Error Bars Comparing Oscillation Amplitude (RMS) Across All Algorithms. While 

Table 1 lists oscillation values, a bar chart with error bars (representing standard deviation from multiple test 

runs) provides an immediate, intuitive comparison of system stability. Low oscillation is critical for converter 

longevity and efficiency. 
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Figure 8: Line Plot of Latency and Environmental Volatility Showcasing Dynamic Weighting Benefit. This 

figure dynamically illustrates the mechanism described in Section 2.2.3. As environmental volatility (e.g., 

irradiance standard deviation) increases, H-MNMPPT’s latency increases slightly (as it activates EGWO), but 

remains far below conventional GWO. Under low volatility, its latency drops close to pure GRU levels. 

4. Discussion 

The superiority of H-MNMPPT stems from its dual-layer intelligence: the GRU network narrows the search 

space using spectral-contextual priors, while EGWO’s [25] enhanced stochasticity ensures robust global 

optimization even under abrupt shading transitions. Unlike pure neural approaches, H-MNMPPT [26] does not 

catastrophically fail when encountering novel shading patterns; the metaheuristic layer acts as a safety net. The 

IoT integration proved critical: real-time spectral data allowed the GRU to adjust its voltage window predictions 

dynamically, whereas systems relying solely on irradiance magnitude exhibited 6–8% efficiency drops under 

AM shifts. Edge-based computation ensured sub-50ms decision cycles, compatible with commercial DC-DC 

converter switching frequencies (20–100 kHz). Compared to recent hybrids (e.g., GA-ANN [10] or PSO-RBF 

[11]), H-MNMPPT reduces convergence time by 52–68% and improves tracking accuracy under spectral 

variability by 11.3%. The Levy-flight injection alone contributed to a 19% reduction in local entrapment 

incidents during testing. Limitations include dependency on spectrometer calibration and increased memory 

footprint (8.7 MB vs. 2.1 MB for P&O). However, with edge hardware costs declining, this trade-off is justified 

by the 21.3% energy recovery gain. The experimental results presented in Section 3 unequivocally validate the 

core hypothesis of this study: that a dynamically weighted, IoT-integrated hybrid of metaheuristic and neural 

intelligence can overcome the fundamental limitations of existing MPPT paradigms under the complex, real-

world duress of partial shading and spectral irradiance variability. The H-MNMPPT architecture’s achievement 

of 98.7% tracking efficiency is not merely a numerical improvement; it represents a qualitative leap towards 

truly resilient and intelligent energy harvesting for next-generation photovoltaic systems. 

The foundation of this performance lies in the synergistic duality of its design. The GRU neural predictor acts as 

an intelligent scout, leveraging its offline training on spectral features specifically, the spectral centroid, 

irradiance skewness, and temperature differentials to provide EGWO with a highly constrained, context-aware 

search window for the global MPP. This is not a simple initialization; it is a continuous, real-time guidance 

system. As demonstrated in Figure 6, this spectral awareness allows H-MNMPPT to maintain efficiency above 

97% across a vast range of spectral conditions (from AM 1.0 to AM 2.5), a feat unattainable by conventional 

algorithms that treat irradiance as a monolithic scalar. Systems relying solely on total irradiance magnitude 

exhibited consistent 6–8% efficiency penalties under spectral shifts, highlighting a previously under-addressed 

source of systemic loss in PV operations. 

Concurrently, the Enhanced Grey Wolf Optimizer serves as a robust, fail-safe explorer. The integration of Levy-

flight perturbations every five iterations proved to be a decisive innovation, directly contributing to a 19% 

reduction in incidents of local entrapment during testing. This stochastic injection of long-range jumps 

effectively shatters the stagnation that plagues canonical GWO and other population-based metaheuristics. The 



Journal of Libyan Academy Bani Walid 2025 
 

 
J o u r n a l  o f  L i b y a n  A c a d e m y  B a n i  W a l i d  Page 47 

adaptive convergence coefficient further refines the search, ensuring a smooth transition from broad exploration 

to fine exploitation as the algorithm converges. This combination explains the 63% reduction in convergence 

time compared to standard GWO-MPPT, bringing it down to a remarkable 1.6 seconds a critical metric for 

capturing transient energy during rapidly changing cloud cover. 

This performance is rooted in the synergistic dualism of its design. The GRU neural predictor functions as an 

intelligent scout, utilizing its offline training on spectral characteristics specifically, the spectral centroid, 

irradiance skewness, and temperature differentials to supply EGWO  [25] with a highly restricted, context-aware 

search window for the global MPP [2]. This is not a straightforward initialization; it is a continuous, real-time 

guidance system. As shown in Figure 6, this spectral awareness enables H-MNMPPT to sustain efficiency above 

97% across a wide spectrum of conditions (from AM 1.0 to AM 2.5), a capability unachievable by conventional 

algorithms that treat irradiance as a single scalar value. Systems dependent solely on total irradiance magnitude 

experienced consistent 6–8% efficiency losses under spectral shifts, underscoring a previously overlooked 

source of systemic loss in PV operations. 

Simultaneously, the Enhanced Grey Wolf Optimizer operates as a robust, fail-safe explorer. The integration of 

Levy-flight perturbations every five iterations proved to be a pivotal innovation, directly resulting in a 19% 

decrease in instances of local entrapment during testing. This stochastic introduction of long-range jumps 

effectively disrupts the stagnation that afflicts canonical GWO and other population-based metaheuristics [25]. 

The adaptive convergence coefficient further enhances the search process, ensuring a seamless transition from 

broad exploration to fine exploitation as the algorithm converges. This combination accounts for the 63% 

reduction in convergence time compared to standard GWO-MPPT [25], [26], reducing it to a remarkable 1.6 

seconds a critical metric for capturing transient energy during rapidly changing cloud cover. 

5. Conclusion and Future Work 

This study presents H-MNMPPT a novel, IoT-integrated hybrid MPPT architecture that synergizes 

metaheuristic resilience with neural predictive efficiency. Validated under rigorous partial shading and spectral 

irradiance variability, the system achieves near-optimal tracking efficiency (98.7%) with rapid convergence 

(1.6s) and minimal oscillation. The dynamic weighting mechanism and edge-compatible design make it suitable 

for deployment in utility-scale smart solar farms. 
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