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Abstract   

This study presents a comprehensive approach to fault detection in rotating mechanical systems through 

frequency-domain signal analysis using Fourier-based decomposition techniques. Time-domain vibration 

signals acquired from rotating machinery are transformed into the frequency domain to extract characteristic 

spectral components indicative of system health. The methodology leverages Fast Fourier Transform (FFT) 

algorithms and harmonic decomposition to isolate anomalies associated with mechanical imbalances, 

misalignments, and bearing wear. Experimental data collected from controlled test rigs under varying 

operational conditions validate the effectiveness of the proposed signal processing framework. Results 

demonstrate that frequency-domain analysis significantly enhances fault detectability compared to traditional 

time-domain inspection methods. This work contributes to the advancement of condition monitoring strategies 

by providing a robust, interpretable, and computationally efficient diagnostic tool applicable in industrial 

settings. 
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 الملخص 
التردد   مجال  إشارة  تحليل  من خلال  الدوارة  الميكانيكية  الأنظمة  في  الأخطاء  عن  للكشف  شاملا  نهجا  الدراسة  هذه  تقدم 

الدوارة إلى   المكتسبة من الآلات  الزمني  المجال  اهتزاز  إلى فورييه. يتم تحويل إشارات  المستندة  التحلل  باستخدام تقنيات 

تحويل  على خوارزميات  المنهجية  تعتمد  النظام.  تدل على صحة  التي  المميزة  الطيفية  المكونات  التردد لاستخراج  مجال 

( السريع  المحاذاة، FFTفورييه  واختلالات  الميكانيكي،  التوازن  باختلال  المرتبطة  الشذوذات  لعزل  التوافقي  والتحليل   )

البيانات التجريبية المُجمعة من منصات اختبار مُتحكم بها في ظل ظروف تشغيلية مُتنوعة فعالية  وتآكل المحامل. وتثُبت 

الأعطال  اكتشاف  إمكانية  يعُزز بشكل كبير من  الترددي  النطاق  تحليل  أن  النتائج  المُقترح. وتظُهر  الإشارة  إطار معالجة 

الحالة من خلال   العمل في تطوير استراتيجيات مراقبة  الزمني. ويسُاهم هذا  النطاق  التقليدية في  الفحص  بأساليب  مُقارنةً 

 توفير أداة تشخيصية قوية وقابلة للتفسير وذات كفاءة حسابية عالية، قابلة للتطبيق في البيئات الصناعية.

 .اكتشاف الأعطال، الأنظمة الميكانيكية الدوارة، القائمة على فورييه، تقنيات التحليل الكلمات المفتاحية:
1. Introduction 

Rotating machinery forms the backbone of various industrial operations, including power generation, aerospace, 

and manufacturing [1], [2], [3], [4]. However, mechanical faults such as rotor imbalance, shaft misalignment, 

gear tooth wear, and bearing defects can lead to catastrophic failures if undetected [5], [6], [7], [8], [9], [10]. 

Early diagnosis through effective signal analysis is crucial for predictive maintenance and system reliability 

[11], [12], [13], [14], [15]. 
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1.2 Problem Statement 

Traditional time-domain signal analysis often lacks sensitivity to subtle changes in machine behavior [16], [17], 

[18], [19], [20]. Furthermore, complex interactions between mechanical components can obscure fault 

signatures, making interpretation difficult without advanced signal processing tools. 

 

1.3 Research Objectives 

• To develop a reliable signal processing framework for detecting mechanical faults. 

• To apply Fourier-based decomposition techniques for transforming time-domain vibration data into 

meaningful frequency-domain representations. 

• To validate the method experimentally using real-world mechanical system data. 

 

1.4 Contribution 

This research contributes an enhanced methodology for fault detection in rotating systems using frequency-

domain characterization, offering both interpretability and computational efficiency [21], [22], [23], [24], [25]. 

The key contribution of this work lies in demonstrating how Fourier-based decomposition techniques can 

enhance fault detection accuracy and interpretability in rotating systems. By leveraging the FFT algorithm, the 

method transforms raw vibration data into a physically meaningful frequency spectrum, enabling early and 

precise identification of common mechanical faults. The approach offers computational efficiency, ease of 

implementation, and direct correlation between spectral features and mechanical behavior making it suitable for 

real-time industrial monitoring and predictive maintenance applications. 

 

2. Literature Review 

2.1 Signal Processing in Mechanical Diagnostics 

A review of existing signal processing methodologies used in mechanical diagnostics, including time-domain 

statistics, wavelet transforms, Hilbert-Huang transforms, and envelope analysis [26], [27]. 

2.2 Fourier Analysis in Mechanical Systems 

Discussion of classical Fourier series and its modern implementation via Fast Fourier Transform (FFT). 

Emphasis is placed on its role in identifying periodic components and harmonics in mechanical vibration signals 

[28], [29], [30]. 

2.3 Comparative Studies 

Comparison of FFT-based approaches with other signal decomposition techniques in terms of accuracy, speed, 

and applicability to different types of mechanical faults. 

 

3. Methodology 

3.1 System Description 

Description of the experimental setup: a laboratory-scale rotating machinery test rig equipped with 

accelerometers, tachometers, and data acquisition systems. 

 

3.2 Data Acquisition 

Table 1.  Data Acquisition Overview. 

Parameter Details 

Sampling Rate 10,000 Hz 

Signal Duration 10 seconds 

Total Samples 100,000 

Sensors Used Piezoelectric accelerometers (2 units) 

Sensor Placement Radial on left and right bearing housings 

Tachometer Optical/magnetic for RPM measurement 

Operating Speed 1800 RPM (30 Hz) 

Load Constant (no variation) 

Test Conditions Healthy, Imbalance, Misalignment, Bearing Defect 

 

3.3 Signal Preprocessing 

Signal preprocessing is a crucial step in preparing raw vibration data for frequency-domain analysis using Fast 

Fourier Transform (FFT). This section outlines the key preprocessing techniques applied to enhance signal 

quality and reduce artifacts that could distort spectral interpretation. 
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Before applying FFT, raw vibration signals are often corrupted by high-frequency noise or electromagnetic 

interference. To mitigate this: 

• Analog Anti-Aliasing Filter  

Applied during data acquisition to remove frequencies above half the sampling rate (Nyquist frequency), 

preventing aliasing. 

• Digital Bandpass Filtering 

A digital filter may be applied post-acquisition to retain only the frequency range of interest (e.g., 0–500 Hz), 

removing low-frequency drift and high-frequency noise unrelated to fault signatures. Improve signal-to-noise 

ratio (SNR) and ensure accurate spectral representation. 

• Detrending 

Vibration signals may contain a DC offset or linear trend due to sensor bias or environmental factors. 

Linear Detrending  

The mean or linear component is removed from the signal: 

 

𝑥detrended [𝑛] = 𝑥[𝑛] − mean(𝑥) 
• Polynomial Detrending   

Higher-order polynomial fits can be subtracted to eliminate non-linear baseline drifts. 

"Purpose: Eliminate low-frequency components not related to mechanical vibrations and prevent spectral 

leakage." 

• Windowing Functions 

When performing FFT, abrupt signal truncation at the beginning and end of the time record can cause spectral 

leakage, where energy from a single frequency spread into adjacent bins. 

To reduce this effect, windowing functions are applied as below 

• Hanning Window   

𝑤[𝑛] = 0.5 (1 − cos (
2𝜋𝑛

𝑁 − 1
)) , 𝑛 = 0,1, … , 𝑁 − 1 

• Hamming Window 

𝑤[𝑛] = 0.54 − 0.46cos (
2𝜋𝑛

𝑁 − 1
) 

This research has applied both windows taper the signal at the edges to zero, reducing discontinuities. 

 

3.4 Frequency Domain Transformation 

Fundamentals of Fast Fourier Transform (FFT) 

3.5 Fault Signature Extraction 

Harmonic content analysis 

Sideband detection 

Amplitude modulation tracking 

Comparison of healthy and faulty spectra 

3.6 Classification Strategy 

Use of threshold-based or machine learning-assisted classification of fault types using extracted spectral 

features. 

 

4. Experimental Results and Discussion 

 

Table 2. Measurement Points and Instrumentation. 

Component Details 

Accelerometers Piezoelectric type, mounted radially on bearing housings (X and Y axes) 

Number of Sensors 2 (one per bearing housing) 

Measurement Points - Left bearing housing (radial) - Right bearing housing (radial) 

Tachometer Optical or magnetic type, used to measure shaft rotational speed (RPM) 

Signal Direction Radial acceleration (g) measured in horizontal plane 

Sampling Rate 10,000 Hz 

Signal Duration 10 seconds per trial (100,000 samples per signal) 

Data Acquisition System Multi-channel DAQ with synchronized sampling 

Signal Conditioning Analog filtering (anti-aliasing), amplification 

Software Tools Python for FFT, plotting, and fault analysis 
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4.1 Test Setup and Conditions 

The experimental investigation was conducted on a laboratory-scale rotating machinery test rig equipped with a 

variable-speed motor driving a horizontal shaft supported by two rolling-element bearings. Accelerometers were 

mounted radially on both bearing housings to capture vibration data in the X and Y directions. Three fault 

conditions were simulated: 

• Case 1: Healthy baseline condition 

• Case 2: Mass-induced rotor imbalance 

• Case 3: Angular misalignment between the motor and driven shaft 

• Case 4: Inner race defect in one of the bearings 

Data was acquired at a sampling rate of 10 kHz under steady-state operation at 1800 RPM. Each trial lasted 10 

seconds, resulting in 100,000 data points per signal. 

 

 
Figure 1: Time-domain acceleration signals for all four conditions (healthy, imbalance, misalignment, bearing 

defect). Signals are plotted over a 1-second segment showing raw accelerometer output in g units. 

 

Healthy Condition (Baseline) 

• No artificial defects; all components are aligned and balanced. 

• Rotor Imbalance 

• A mass is intentionally added to the rotor to simulate unbalance. 

• Causes increased vibration amplitude at the 1× rotational frequency (30 Hz). 

Angular Misalignment 

• Intentional angular offset between the motor shaft and driven shaft. 

• Typically introduces 2× rotational frequency (60 Hz) components in the spectrum. 

Bearing Inner Race Defect 

• An artificial defect is introduced on the inner race of one bearing. 

• Generates high-frequency components in the vibration signal, particularly near 250 Hz, computed from 

bearing geometry and speed. 

Figure 1 presents the time-domain acceleration responses of a rotating mechanical system under four distinct 

operational conditions: Healthy, Rotor Imbalance, Angular Misalignment, and Bearing Defect. Each subplot 

captures a 1-second segment of raw vibration data obtained via accelerometers mounted radially on the bearing 

housings, measured in gravitational acceleration units (g). The sampling frequency is 10 kHz, ensuring high 

temporal resolution suitable for dynamic analysis. The top subplot illustrates the baseline response of the system 

in a fault-free state. The waveform demonstrates a low-amplitude sinusoidal pattern with minimal noise, 

centered around the system’s rotational frequency (30 Hz). The periodicity and smoothness of the waveform 

reflect stable shaft rotation, balanced mass distribution, and proper alignment of all mechanical components. 
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This trace serves as a reference for fault detection.  The second plot from the top corresponds to the rotor 

imbalance condition, where a mass asymmetry was artificially introduced. Compared to the healthy signal, there 

is a marked increase in amplitude, consistent with centrifugal forces generated by unbalanced rotating mass. The 

waveform remains periodic but exhibits amplified oscillations at 1× RPM (30 Hz), which is characteristic of 

imbalance-induced radial excitation. The third subplot captures the signal under angular misalignment. The 

waveform shows increased frequency content and complexity relative to the healthy and imbalance cases. This 

condition introduces additional harmonic components especially the 2× RPM component (60 Hz) resulting in a 

modulated sinusoidal pattern. Such a waveform reflects the out-of-phase interaction between misaligned shafts, 

causing dynamic coupling and higher-order excitation. The bottom subplot reveals the time-domain response 

when a defect was introduced on the inner race of a rolling-element bearing. Unlike the preceding cases, the 

waveform exhibits high-frequency modulation superimposed on a low-frequency carrier. These bursts of rapid 

oscillations arise from localized impacts as the defective raceway interacts with the rolling elements. This non-

stationary signal is indicative of structural discontinuities and fault-induced resonances. 

 

4.2 Time-Domain Signal Examples 

Plots showing raw vibration signals under different operating conditions, highlighting their complexity and lack 

of clear fault indicators. Time-domain vibration signals from each case are shown in Figure 1 , where it is 

evident that distinguishing between healthy and faulty states based solely on amplitude or waveform is 

challenging. For instance, while the imbalance case shows slightly increased peak amplitudes, the misalignment 

and bearing defect cases exhibit subtle waveform distortions that are not easily interpretable without further 

processing. 

 

4.3 Frequency-Domain Analysis 

Using Fast Fourier Transform (FFT), the time-domain signals were transformed into the frequency domain. The 

dominant rotational frequency component (30 Hz, corresponding to 1800 RPM) and its harmonics were 

identified across all cases. In the healthy condition (Figure 2a ), only the fundamental frequency and minimal 

harmonics were present. In contrast, the imbalance case (Figure 2b ) showed a significant increase in the 

amplitude of the 1× RPM harmonic (30 Hz), confirming the characteristic signature of unbalance. For the 

angular misalignment (Figure 2c ), second-order harmonics (2× RPM = 60 Hz) became prominent, consistent 

with known spectral indicators of alignment issues. Lastly, the bearing defect (Figure 2d ) introduced high-

frequency components around 250 Hz, which corresponded to the inner race defect frequency calculated using 

bearing geometry and shaft speed. 

Stage  1: employed Fast Fourier Transform (FFT) 

• Rotor imbalance → 1× RPM harmonic 

• Signal duration 𝑇 = 10 sexonds 

• Total number of samples: 

𝑁 = 𝑓𝑥 ⋅ 𝑇 = 10,000 × 10 = 100,000 samples  

Let the time domain vibration signal be denoted ax: 

𝑥|𝑛| =  Raw aeceleration data at sample 𝑛, 𝑛 = 0,1, … , 𝑁 − 1 

Stage 2: The Preprocessing   

 1. Detrending: Remove any linear or constant oldest. 

𝑥detrend [𝑛] − 𝑥[𝑛] − mean(𝑥) 
2. Windowing: Apply a Hanning window to reduce spectral leakage: 

𝑤[𝑛] = 0.5 (1 − cos (
2𝜋𝑛

𝑁 − 1
)) , 𝑛 = 0,1, … , 𝑁 − 1

𝑥unithred [𝑛] − 𝑥detroad [𝑛] ⋅ 𝑛[𝑛]

 

3. Zero-padding (optional): To increase frequency resolution, pad with zeros: 

𝐹padiled = [𝑃nindowed , 0,0, … ,0] (length increased to next power of 2 )  

Stage 3: Fast Fourier Transform (FFT) 

Compute the Discrete Fourier Transform (DFT) using FFT: 

𝑋 ∣ 𝑘] = ∑  

𝑁−1

𝑛=0

𝑥nindower [𝑛] ⋅ 𝑒
−𝐽2+𝑘𝑛/𝑁 , 𝑘 − 0,1, … , 𝑁 − 1 

This results in complex values 𝑋[𝑘], where each index corresponds to a trequency binc 

𝑓𝑘 =
𝑘 ⋅ 𝑓𝑎
𝑁

 

For 𝑘 − 30, 𝑓𝑘 −
 Trassi 

 Trom 
− 3 Hz 

In the paper, bey frequencies were: 



Journal of Libyan Academy Bani Walid 2025 
 

 
J o u r n a l  o f  L i b y a n  A c a d e m y  B a n i  W a l i d  Page 56 

• 𝑓1 = 30H2 - fundamental ( 1 × RPM) 

• 𝑓2 = fit Hz = second harmonic ( 2 × RPM) 

• 𝑓b = 250 Hz - bearing defect frequency 

Stage 4: Magnitude Spectrum Computation 

Compute the magnitude spectrum 

|𝑋|𝑘 |∣= √Re(𝑋|𝑘|)2 + Im(𝑋 ∣ 𝑘])2 

Convert to RMS amplitude (as used in the paper) 

Λmss [𝑘] =
𝑋𝑘

√2
 

Stage 4: Normalize stage 

Λaarn [𝑘] −
Λnus [𝑘]

max(Λmes )
 

Stage 5: Fault Signature Extraction 

Identity peak at known   frequencies: 

1. Rotor Imbalance: 

• Look for post at 𝑓 = 30 Hz 

Calculate theoretical bearing defect frequency using 

𝑓𝑑 =
𝑁B

2
⋅ 𝑓𝑟 ⋅ (1 ±

𝑑

𝐷
cos 𝜃) 

Stage 6: Threshold-Based Classification 

Define thresholds based on healthy baseline amplitudes 

• Healthy: 𝐴 E peaks within normal range 

• Imbalance: Palk at 30 Hz exceeds threshold 

• Misalignment: Peak at 60 Hz dominates 

• Bearing defect: Peak at 250 Hz appears 

Stage 7: Performance Metrics 

 

Table 3. Using the classification results from Table 2 

PALLT TYTE Detected (TP) NAT detected [FN] Detection Rate PA 

Health W 2 5E5 

Imbalance 100 0 1005 

Misalignment At 1 205 

 

Bearing Defect 

 

Ts 5 25x 

Overall Accuracy   97.5% 

 

Calculate overall accuracy. 

 Accuracy =
∑  𝑇𝑃

∑  (𝑇𝑃 + 𝐹𝑁)
−

98 + 100 + 97 + 95

100 + 100 + 100 + 100
−
390

400
− 97.5% 

Sensitivity (Recall): 

 Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity (Thue Negative Ratol 

 Specificity −
𝐼𝑁

𝑇𝑁 + 𝐹𝑃
 

(Note: TN and FP would require confusion matrix data not provided.) 
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Figure 2. Confusion Matrix of Fault Detection. 

 

 

Table 4. The Equations Used in this research. 

STEP DESCTUPION IQUATIDN 

1 Sampling 𝑁 − 𝐾0 − 𝑇 

2 Windowing 𝑥sumberil [𝑛] − 𝑥[𝑛] − 𝑥[𝑛] 

3 III 𝑋[𝑘] − 2; 2[𝑛] − 𝑐−𝑐2arc𝑁 

4 Imbalance 𝑓6 −
𝑘6
4

 

5 Misalignment 5 

6 195 SA.Tulodiamell = 1/fact 

7 Evading deriset frequency 𝑓1 −
𝜋

2
𝑓𝑟 (1 +

𝜋

2
 rrof ) 

8 Accuracy 
𝜋

𝜋𝑒1 +∞
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Figure 3_1: Healthy FFT spectra of vibration signals from all four mechanical conditions. X-axis represents 

frequency (Hz), Y-axis shows amplitude (g RMS). Peaks are annotated with their physical significance . 

This FFT spectrum serves as a baseline signature for a healthy rotating system. It exhibits the expected 

characteristics of a well-balanced, properly aligned shaft system with no observable defects. The clear and 

isolated spectral peak at the operating frequency (1×) confirms that Fourier-based analysis is effective in 

capturing core mechanical behavior in a diagnostically interpretable manner. 

 
Figure 3_2: Imbalance FFT spectra of vibration signals from all four mechanical conditions. The X-axis 

represents frequency (Hz), Y-axis shows amplitude (g RMS). Peaks are annotated with their physical 

significance. 

Relative to the FFT spectrum of the healthy condition, the imbalance spectrum displays a marked increase in 

amplitude at the fundamental frequency, while the spectral shape remains narrow and well-defined. This 

contrast underpins the diagnostic power of FFT, where changes in peak amplitude provide a reliable indicator of 

the severity of the fault. The FFT spectrum in this figure exemplifies the typical response of a rotor system 

experiencing imbalance. The dominant, isolated peak at 1× RPM with increased amplitude confirms the 

presence of a mass-eccentricity-induced vibration. This result supports the use of frequency-domain analysis as 

a quantitative and interpretable method for identifying imbalance faults in rotating machinery. 
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Figure 3_3: Misalignment FFT spectra of vibration signals from all four mechanical conditions. The X-axis 

represents frequency (Hz), Y-axis shows amplitude (g RMS). Peaks are annotated with their physical 

significance. 

As presented in Figure 2_3, FFT spectrum exemplifies the frequency-domain response of a system experiencing 

angular misalignment. The elevated 2× RPM peak with a supporting 1× component provides a diagnostic 

fingerprint that is both repeatable and mechanically interpretable. The clarity of harmonic features reinforces the 

utility of FFT as a diagnostic tool for shaft misalignment detection in rotating machinery. 

 

 

 
Figure 3_4: Bearing Defect FFT spectra of vibration signals from all four mechanical conditions. X-axis 

represents frequency (Hz), Y-axis shows amplitude (g RMS). Peaks are annotated with their physical 

significance. 

 

A notable peak is visible at approximately 250 Hz, which aligns with the bearing defect frequency derived from 

the bearing’s geometry and shaft speed often referred to as the BPFO (Ball Pass Frequency Outer) or BPFI (Ball 

Pass Frequency Inner) depending on defect location. A smaller peak at 30 Hz (1× RPM) is also present, 

indicating base-level rotational activity of the shaft. No significant harmonic or broadband components are seen 

beyond the defect frequency, indicating a localized, well-isolated fault signature. In rolling-element bearings, 

defects such as spalls or pits on the inner race produce periodic impacts each time a rolling element traverses the 

damaged zone. These impacts generate high-frequency excitations, which manifest in the FFT spectrum at a 

characteristic defect frequency. This frequency is calculated using the bearing’s geometry (number of rolling 

elements, pitch diameter, contact angle) and the shaft rotation speed. The distinct spectral peak at ~250 Hz 

serves as a diagnostic marker for inner race damage, a well-documented phenomenon in vibration-based 

condition monitoring. The relative amplitude (~0.9 g RMS) of this component indicates the severity of the 
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defect, while the absence of modulating sidebands suggests the defect is not yet at an advanced spalling stage. 

The accompanying 1× RPM component (30 Hz) reflects the shaft's rotational motion but is not indicative of 

bearing condition. This FFT spectrum effectively highlights the presence of an inner race bearing defect through 

the emergence of a characteristic frequency component (~250 Hz). The spectral clarity and narrowband nature 

of the peak demonstrate the utility of frequency-domain analysis particularly FFT in detecting incipient rolling-

element bearing faults. This reinforces the method’s value in predictive maintenance and fault isolation within 

complex rotating systems. 

 

Table 5: Summary of key frequency components and their associated fault types: 

Frequency (Hz) Fault Type Amplitude (g RMS) 

30 Rotor Imbalance 1.45 

60 Shaft Misalignment 1.12 

250 Bearing Inner Race Defect 0.92 

 

4.4 Fault Detection Accuracy 

A threshold-based detection algorithm was implemented using the amplitude of the dominant frequency peaks. 

Sensitivity and specificity metrics were computed as follows: 

 

Table 6: Classification performance of the proposed method: Detection rate. 

Fault Type Detected (True Positives) Not Detected (False Negatives) Detection Rate (%) 

Healthy 98 2 98% 

Imbalance 100 0 100% 

Misalignment 97 3 97% 

Bearing Defect 95 5 95% 

 

These results indicate high reliability in identifying mechanical faults based on frequency-domain. 

  

Table 7. Key Features Extracted. 

Feature 
Frequency 

(Hz) 
Associated Fault Interpretation 

Fundamental frequency 

(1×) 
30 Rotor imbalance Elevated amplitude at shaft rotation speed 

Second harmonic (2×) 60 
Angular 

misalignment 

Indicates phase variation between shaft 

components 

Bearing defect signature ~250 Inner race fault 
High-frequency excitation from localized 

damage 

 

For the imbalance case, the 1× RPM harmonic becomes a dominant spike at 30 Hz, which may have been 

indistinct in the time domain due to random vibration and noise. 

 

Table 8. Quantitative Observation. 

Metric Time-Domain Frequency-Domain (FFT) 

Peak-to-RMS Ratio Low (≈2) High (>10) at fault freq. 

SNR (dB) ~10–15 dB ~25–35 dB 

Fault Separability Poor Clear (narrowband peaks) 

 

4.5 Comparative Performance 

Comparison of results with alternative signal processing techniques (e.g., Wavelet Packet Transform or 

Envelope Spectra), demonstrating superiority of the proposed method in specific fault scenarios. 

To evaluate the effectiveness of the proposed approach, a comparison was made with alternative methods such 

as Wavelet Packet Transform (WPT) and Envelope Spectral Analysis (ESA). While WPT provided better 

resolution for transient events, the computational complexity was significantly higher. ESA was effective in 

detecting bearing defects but less sensitive to global imbalances or misalignments. 

The proposed FFT-based method demonstrated superior computational efficiency and interpretability, making it 

suitable for real-time monitoring systems. 
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Figure 4: Bar graph comparing computation times of Signal Processing Methods FFT, WPT, and ESA for the 

same dataset. FFT is fastest (~0.02 s/sample), followed by ESA (~0.05 s), then WPT (~0.35 s). 

 

Table 9: Comparison of fault detection accuracy across different signal analysis techniques: 

Method Imbalance Misalignment Bearing Defect Average Detection Rate 

FFT 100% 97% 95% 97.30% 

WPT 98% 96% 98% 97.30% 

ESA 92% 90% 99% 93.70% 

 

5. Discussion 

The effectiveness of Fourier-based signal decomposition for fault identification in rotating machinery has been 

critically evaluated through systematic experimentation and comparative spectral analysis [5], [6], [7], [8]. This 

section interprets the findings within the context of the broader signal processing literature and mechanical 

diagnostics frameworks. The spectral transformation of vibration signals using Fast Fourier Transform (FFT) 

exposed distinct frequency-domain signatures associated with specific mechanical faults. In the healthy 

condition, the frequency domain was characterized by a clear 1× rotational frequency component (30 Hz) and 

minimal harmonic content, which aligns with expected baseline spectral purity in balanced and aligned systems. 

Under induced imbalance, there was a conspicuous amplification at the 1× RPM harmonic [30], [31], [32]. This 

observation is consistent with classical rotor dynamics, where mass eccentricity introduces periodic radial 

excitation synchronous with shaft rotation. The misalignment condition was signified by the presence of a 

dominant 2× RPM component (60 Hz), in agreement with theoretical models indicating angular phase 

disturbances in misaligned shafts. Of particular diagnostic interest was the bearing inner race defect, which 

generated broadband high-frequency content centered around ~250 Hz. This spectral response corresponds to 

the calculated defect frequency using bearing geometry and is a known hallmark of surface discontinuities in 

rolling-element contacts. These results substantiate the assertion that FFT serves as a reliable tool for isolating 

deterministic fault-related components from otherwise stochastic vibration data [33], [34], [35]. 

A significant advantage of the FFT-based framework lies in its ability to improve the signal-to-noise ratio 

(SNR) by concentrating fault-related energy into discrete frequency bins [36], [37], [38], [39], [40]. In contrast 

to the time-domain representation, which suffers from waveform complexity and low fault separability, the 

frequency-domain spectra revealed narrowband peaks with enhanced visibility. Quantitative metrics support this 

enhancement, with SNR improvements observed from ~10–15 dB in raw data to ~25–35 dB post-transformation 

[41], [42], [43]. This clarity not only facilitates visual inspection but also supports automated threshold-based 

classification systems. Another critical finding is the superior computational efficiency of the FFT compared to 
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alternative methods such as Wavelet Packet Transform (WPT) and Envelope Spectral Analysis (ESA). As 

demonstrated in the experimental benchmarks (Figure 3.3), FFT achieved the fastest average processing time 

(~0.02 s/sample), significantly outperforming ESA (~0.05 s/sample) and WPT (~0.35 s/sample). This 

performance profile positions FFT as an attractive candidate for real-time implementation in industrial 

monitoring systems, where minimal latency and high reliability are essential. While WPT offered improved 

sensitivity to transient, non-stationary components particularly useful for early-stage bearing defects its 

complexity and resource demands render it less practical for embedded systems. ESA showed promise for 

detecting high-frequency bearing impacts but lacked robustness in identifying lower-frequency phenomena such 

as misalignment [41], [42], [43]. The FFT-based method, on the other hand, delivered consistently high 

detection rates across all fault types (average: 97.3%), underscoring its versatility and robustness in multi-fault 

environments. Perhaps one of the most compelling arguments for the adoption of Fourier-based methods in fault 

diagnostics is their interpretability. Unlike black-box machine learning models or abstract time-frequency 

decompositions, FFT spectra provide a physically intuitive representation of machine dynamics. This enhances 

diagnostic transparency, enabling engineers to correlate spectral features directly with known mechanical 

behaviors. 

 

5. Conclusion 

The application of Fourier-based decomposition techniques has proven effective in extracting fault-related 

features from rotating mechanical systems. The transformation of time-domain vibration signals into the 

frequency domain enables early and accurate identification of common mechanical faults. The experimental 

results confirm that frequency-domain signal characterization using Fourier-based decomposition provides an 

efficient and accurate means of diagnosing common mechanical faults in rotating systems. The transformation 

enabled clear differentiation between various fault types through identifiable spectral patterns. These findings 

support the integration of FFT-based diagnostics in industrial predictive maintenance frameworks. 

 

5.1. Future Work 

Future studies may explore hybrid approaches combining Fourier analysis with time-frequency methods (e.g., 

STFT, Wigner-Ville distribution) for improved fault localization and classification in dynamic environments. 
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