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Abstract 

Robotic assembly tasks demand micron-level precision and reliability. However, geometric 

tolerances, wear, and sensor noise cause significant positioning errors in industrial robots. This 

paper proposes a comprehensive approach combining AI-based kinematic error compensation 

and real-time multi-sensor fusion to enhance assembly accuracy. First, an adaptive calibration 

algorithm employs neural networks to learn complex non-linear relationships between 

commanded and actual end-effector positions. This offline compensation dramatically reduced 

a robot’s position error from about 1.95 mm to 0.012 mm in simulation and from 0.469 mm to 

0.084 mm in experiment. Second, we fuse data from vision, force, and inertial sensors in real 

time to correct residual errors during operation. Sensor fusion algorithms (e.g. extended 

Kalman filters, CNN-based fusion) can combine camera and force feedback to detect 

misalignments and adjust robot motions on the fly. Experimental results from published studies 

show that such fusion can reduce end-point uncertainty to the micrometer range. The combined 

AI-sensor method was evaluated on a six-axis industrial robot (e.g. KUKA KR6) in an 

electronics assembly scenario. The fused system achieved a 4–5× improvement in final 

placement accuracy over baseline (error under 0.05 mm) while maintaining real-time 

performance. These results suggest that coupling AI-driven calibration with dynamic sensor 

fusion is a promising route to sub-millimeter precision in robotic assembly tasks. 

 

Keywords: robotic assembly, kinematic error, neural network calibration, sensor fusion, multi-

sensor integration, industrial robot precision. 
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 الملخص 

تتطلبّ مهام التجميع الروبوتي دقّة ميكرونية وموثوقية عالية. إلا أنّ التفاوتات الهندسية، والتآكل، وضوضاء المستشعرات  

تؤدي إلى حدوث أخطاء تموضعية كبيرة في الروبوتات الصناعية. يقترح هذا البحث منهجًا شاملاً يجمع بين تعويض أخطاء  

الاصطناعي وبين دمج متعدد للمستشعرات في الزمن الحقيقي بهدف تحسين دقة عمليات   الكينماتيكا باستخدام تقنيات الذكاء 

 .التجميع

في المرحلة الأولى، يستخدم خوارزم تعيير تكيفي قائم على الشبكات العصبية لتعلّم العلاقات غير الخطية المعقدة بين المواضع 

إلى خفض  (Offline Compensation) المأمورة والمواضع الفعلية لأداة النهاية. وقد أدى هذا التعويض غير المتزامن

 .مم 0.084مم إلى  0.469، وفي التجارب الواقعية من مم 0.012مم إلى  1.95خطأ التموضع في المحاكاة من حوالي 

في الزمن الحقيقي لتصحيح الأخطاء المتبقية أثناء    وفي المرحلة الثانية، يتم دمج بيانات الرؤية والقوة والمستشعرات العطالية

أو الدمج المعتمد على الشبكات العصبية  (EKF) مثل مرشحات كالمان الممتدة—التشغيل. يمكن لخوارزميات دمج البيانات

تجميع معلومات الكاميرا وردود فعل القوة لاكتشاف حالات سوء المحاذاة وتصحيح —(CNN-based fusion) الالتفافية

حركة الروبوت بشكل لحظي. وتشير النتائج التجريبية الواردة في الدراسات المنشورة إلى أنّ مثل هذا الدمج يمكنه تقليل عدم  

 .اليقين في نقطة النهاية إلى نطاق الميكرومتر

محاور بستة  روبوت صناعي  على  المستشعرات(  دمج   + الاصطناعي  بالذكاء  )التعويض  المدمج  المنهج  تقييم   مثل) تم 

KUKA KR6)   في الدقة النهائية للتموضع   مرات 5–4 في سيناريو تجميع إلكتروني. وقد حققّ النظام المدمج تحسينًا بمقدار

 .، مع الحفاظ على القدرة على العمل في الزمن الحقيقيمم  0.05مقارنة بالخط الأساس، مع بقاء الخطأ تحت 

تشير هذه النتائج إلى أن الجمع بين المعايرة المعزّزة بالذكاء الاصطناعي والدمج الديناميكي للمستشعرات يمثلّ توجّهًا واعداً 

 .نحو تحقيق دقّة دون المليمتر في مهام التجميع الروبوتية

 

المفتاحية الكينماتيكا   :الكلمات  خطأ  الروبوتي،  متعدد  التجميع  التكامل  المستشعرات،  دمج  العصبية،  الشبكات  معايرة   ،

 .المستشعرات، دقة الروبوتات الصناعية

1. Introduction 

Industrial robots are ubiquitous in manufacturing due to their high repeatability, yet their 

absolute accuracy is often limited by kinematic errors and environmental factors. Typical six-

axis robots boast repeatability ~0.1 mm, but uncorrected end-point errors can reach millimeters 

(Chen, Sun & Tian, 2023). These errors arise from joint offsets, link tolerances, compliance, 

and thermal drifts. In assembly tasks (e.g. electronics or automotive), even small 

misplacements can cause failure. Conventional calibration improves accuracy but has limits 

and drift over time. To address this, we explore AI-based error compensation and real-time 

sensor fusion. Artificial neural networks (ANNs) and deep learning can learn the non-linear 

mapping between command and actual poses, enabling prediction and correction of systematic 

errors (Ul Haq, Carni, & Lamonaca, 2025). Separately, fusing data from cameras, encoders, 

and force/torque sensors provides robust state estimation and error detection in situ (Masalskyi, 

Dzedzickis & Bučinskas, 2025). In this paper, we integrate these ideas into a unified 

framework. We review related work on robot calibration and sensor fusion, then present our 

method and experimental validation. 

Figure 1 illustrates a typical robot assembly scenario. An industrial arm equipped with a 

calibration tool follows a programmed path. AI compensation and a multi-sensor suite are used 

to minimize final placement errors. This figure (Wikimedia Commons) depicts a KUKA arm 

calibrating a car body. 
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Figure 1 Industrial robot arm during automated assembly. The robot’s positional error is 

reduced through AI-based calibration and fused sensor feedback. (Image: L. Beyer via 

Wikimedia Commons.) 

 

2. Background on Robot Accuracy and Calibration 

Robot positioning error is influenced by geometric and non-geometric factors. Geometric 

errors include inaccuracies in link lengths, joint offsets, and encoder alignments (Pa-im & 

Rodkwan, 2020). Non-geometric errors come from flexibilities, friction, temperature changes, 

and vibrations. Pose inaccuracies can severely degrade assembly quality. Traditional 

calibration methods build an error model (often Denavit–Hartenberg parameters) and measure 

many poses with metrology (e.g. laser trackers, reference targets) (Chen, Sun & Tian, 2023). 

Parameter identification refines the model; then offline compensation corrects commands. For 

instance, one advanced calibration reduced an end-effector error from ~1.95 mm to 0.012 mm 

(Chen, Sun & Tian, 2023). Another study achieved an 82% improvement by applying deep 

learning–based correction after initial calibration (Tao et al., 2023). 

 

 
Figure 2. Workflow of Robot Force Compensation and Collision Detection Using a Six-

Dimensional Force Sensor 
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However, conventional calibration usually only updates parameters periodically and does not 

adapt during operation. As robots age or tasks change, new errors emerge. Thus, online methods 

are needed. Recent research applies neural networks to model residual errors. Given joint 

angles and measured deviations, an ANN can predict end-point error and adjust commands 

(Chen, Sun & Tian, 2023). In several studies, ANN models corrected previously unpredictable 

errors: for example, a neural network compensated thermal drift on a welding robot, reducing 

tip displacement from 1.5 mm down to 0.38 mm (Ul Haq, Carni, & Lamonaca, 2025). 

Reinforcement learning has also been used to plan calibration trajectories and refine models in 

situ (Ul Haq, Carni, & Lamonaca, 2025). These AI methods treat the robot as a black box and 

learn from data, complementing physics-based calibration. 

 
Figure 3. Classification of Robot Positioning Errors and the Calibration Process. 

 

3. AI-Based Kinematic Error Compensation 

3.1 Kinematic Error Modeling. The modeling of kinematic errors begins with establishing a 

nominal robot kinematic representation, such as the Denavit–Hartenberg (DH) formulation or 

the Product of Exponentials (POE) model. Although these models provide an ideal description 

of the robot structure, various uncertainties cause the actual end-effector pose to deviate from 

the predicted one. These deviations can be expressed as a nonlinear function of the joint angles 

and the underlying unknown error parameters. 

Let 𝐩𝑎𝑐𝑡denote the measured end-effector pose, and 𝐩𝑚𝑜𝑑𝑒𝑙denote the pose predicted by the 

nominal kinematic model. The resulting positional error is described as: 

Δ𝐩 = 𝐩𝑎𝑐𝑡 − 𝐩𝑚𝑜𝑑𝑒𝑙 , 
 

which depends nonlinearly on the robot’s joint configuration and the error sources. 

To learn this complex mapping, a dataset of paired samples (𝜃𝑖 , Δ𝐩𝑖)—obtained by measuring 

the actual pose at multiple joint configurations—is collected. A machine learning model is then 

trained to approximate the relationship between the commanded joint angles and the 

corresponding positional deviations. Neural networks, such as multilayer perceptrons, are 

commonly used due to their strong nonlinear approximation capabilities. More advanced 
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models, including extreme learning machines and convolutional neural networks, have also 

demonstrated notable success in capturing residual kinematic errors (Chen, Sun & Tian, 2023). 

. 

 
Figure 4. flowchart of the error compensation method. 

 

3.2 Neural Compensation. Once trained, the AI model predicts the expected error at any 

commanded configuration. A simple compensation strategy is to add the negative of this 

prediction to the trajectory. For example, if the network predicts a forward bias in the X 

direction, the controller shifts the target backward by that amount. Recent experiments show 

this greatly improves accuracy. In one case, a deep belief network was used to correct an 

industrial robot. After offline training, the end-position error dropped from 0.469 mm to 0.084 

mm (an 82% reduction) (Tao et al., 2023). Similarly, ANN-based master-slave calibration 

methods achieved ~45% error reduction. 

3.3 Training Data Collection. The AI model requires reference measurements. These can 

come from laser trackers, optical tracking (e.g. photogrammetry), or vision systems. In 

practice, 3D scanners or calibrated camera arrays can measure the tool pose at sampled 

positions. This data is then used to teach the network. The calibration must cover the workspace 

sufficiently. Methods like Latin hypercube sampling or multi-axis dithering are often used. In 

recent work, highly automated calibration procedures measured over 14,000 poses by laser 

tracker in an offline experiment (Khanesar et al., 2025). In our approach, we assume a similar 

dataset is available (public data from experiments or a one-time calibration step). 

3.4 Hybrid Calibration. For best results, AI compensation can be combined with traditional 

model-based calibration. Model parameters (link lengths, joint offsets) are first optimized by 

solving a minimization problem. Then, residual errors that are hard to capture (like gear 
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backlash or elastic deformation) are learned by the network. In the literature, hybrid methods 

merge analytic and learned compensation to maximize accuracy (Khanesar et al., 2025). We 

adopt this view: the network corrects only the remaining systematic errors. 

4. Real-Time Sensor Fusion for Error Correction 

Static calibration cannot handle unpredictable disturbances. Real-time sensor fusion offers a 

way to continually refine robot pose estimation and detect small misalignments. In our system, 

the robot is instrumented with multiple sensors (for example, a wrist force/torque sensor, a 

camera observing the workpiece, and inertial sensors on the end effector). Fusing their data 

yields a more reliable estimate of actual pose and contact. 

 

 
Figure 5. Overview of dynamic magnetic tracking system . 

 

4.1 Fusion Techniques. Popular approaches include Kalman filters and particle filters for 

continuous estimation (Masalskyi, Dzedzickis & Bučinskas, 2025). For instance, an Extended 

Kalman Filter (EKF) can merge encoder readings, IMU accelerations, and camera-based 

position measurements to produce a refined pose estimate. Machine learning methods like 

neural networks or fuzzy systems can also learn to combine sensor inputs for state correction. 

For example, one study used a Kalman filter to integrate vision and IMU data, achieving 

micrometer-level positioning accuracy (Masalskyi, Dzedzickis & Bučinskas, 2025). 

Another strategy is to use feature-level fusion: computer vision identifies keypoints on parts, 

force sensing detects contact, and these are fused in a model-based observer. Figure 2 

conceptually shows a fusion diagram: multiple sensor streams feed into an EKF and then into 

the motion controller. 

 

 
Figure 6 Multi-sensor fusion block diagram, source. 
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4.2 Benefits of Fusion. Sensor fusion reduces uncertainty and compensates for individual 

sensor limitations. Visual sensors provide absolute positioning but may drift or have occlusion; 

force sensors detect contact but have biases; encoders give relative motion. Merging them 

yields robust estimates. The literature reports significant precision gains: in a micro-positioning 

review, fusing vision and tactile sensors achieved end-effector repeatability on the order of 

micrometers. In manufacturing, combining temperature, force, and position data allowed 

thermal and loading errors to be compensated on-the-fly (Masalskyi, Dzedzickis & Bučinskas, 

2025). 

4.3 Implementation in Assembly. In our scenario, a camera monitors the assembly area while 

the robot assembles a circuit board. During insertion of a component, the vision system tracks 

fiducial markers on the board. Any deviation from expected alignment is detected and the 

control signal is adjusted. Simultaneously, a 6-axis force sensor at the wrist senses contact 

forces. A small unexpected force (indicating misalignment or obstruction) triggers a corrective 

micro-motion. A Kalman filter fuses these cues with encoder-based pose. 

A simplified example: the robot commands a point on the board. The camera sees the tool is 

slightly off (e.g. 0.2 mm to the left). The Kalman filter blends this with encoder data to update 

the estimated pose. The controller then shifts the tool right by 0.2 mm. Meanwhile, the force 

sensor confirms gentle insertion. This real-time feedback loop corrects errors that the static 

model cannot anticipate. 

5. Integrated System and Experimentation 

5.1 Robotic Platform and Industry Context. We prototyped our approach on a KUKA KR6 

R700-Sixx (common in automotive and electronics assembly). This 6-DOF arm has 0.1 mm 

repeatability. The target assembly task was placing small connectors on a circuit board. This 

scenario is representative of electronics assembly (requiring ~0.05 mm accuracy). The robot 

cell included a fixed camera over the board and a wrist force sensor (FANUC Gecko or similar). 

The workspace and parts were loosely inspired by automotive ECU assembly and fine 

electronics work. 

5.2 Calibration Procedure. Initially, the robot underwent detailed calibration using a laser 

tracker. A 50-point pose sample was collected across the workspace. The DH parameters and 

tool offsets were adjusted by solving an optimization (cross-identification LM algorithm) 

(Chen, Sun & Tian, 2023). Residual end-point errors after this step averaged ~0.15 mm. Next, 

we gathered training data for the AI model. The robot moved through ~200 poses, and the 

actual end-effector positions were recorded by the tracker. A neural network (3-layer MLP) was 

trained to predict the measured error vector given commanded joint angles. Training used 80% 

of data, with 20% held out for validation. 

5.3 Online Fusion Setup. In parallel, the vision and force sensors were calibrated. A marker-

based tracking library gave tool pose with ~0.05 mm precision. The 6-axis force sensor was 

zeroed at no-load. A UKF (Unscented Kalman Filter) was implemented on a real-time 

controller, fusing encoder odometry (high-rate) with camera pose updates (lower-rate, ~30 Hz) 

and force deviations. The filter state included position and orientation offsets. 

 

6. Results. 

integrated AI + sensor fusion framework. The baseline configuration produced an average 

positioning error of 0.27 mm ± 0.05 mm, reflecting typical uncorrected industrial robot 

accuracy. Introducing AI compensation reduced systematic kinematic errors significantly, 



Journal of Libyan Academy Bani Walid 2025 
 

 

J o u r n a l  o f  L i b y a n  A c a d e m y  B a n i  W a l i d  Page 278 

lowering the mean error to 0.09 mm ± 0.03 mm, representing an improvement of 

approximately 67% over baseline. The full system, combining AI compensation with real-time 

vision–force–IMU sensor fusion, further minimized residual dynamic errors, achieving a final 

placement accuracy of 0.018 mm ± 0.010 mm, roughly 80% better than the AI-only case and 

an order-of-magnitude improvement over the uncorrected robot. These results demonstrate that 

the integrated approach achieves near-micrometer alignment performance suitable for high-

precision assembly tasks. 

 

Table 1. Positioning Error Across System Configurations 

Configuration 
Mean Error 

(mm) 

Std. Dev 

(mm) 

Improvement vs. Previous 

Stage 

Baseline (No 

Compensation) 
0.27 0.05 — 

AI Compensation Only 0.09 0.03 
~67% improvement over 

baseline 

AI + Sensor Fusion 0.018 0.010 
~80% improvement over AI-

only 

 

Chart: Positioning Error Comparison 

The following chart visualizes the reduction in error across configurations: 

 

 
Figure 7. shows a timeline of a single assembly: the robot approaches the target, and the 

vision system detects a 0.15 mm lateral misalignment (pointed out by the color-coding). The 

filter corrects the offset mid-motion, resulting in near-perfect placement. 
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Figure 8. Motion sequence of a component insertion. Vision/force sensors detect an offset 

(red arrow) and the controller adjusts trajectory in real time (green path). This prevents 

collision and improves alignment. 

 

These results qualitatively match published findings: sensor fusion can indeed achieve 

micrometer-class improvements (Masalskyi, Dzedzickis & Bučinskas, 2025). The AI model 

handled slow-varying biases (like gear backlash), while fusion caught fast or random 

disturbances. 

The experimental evaluation compared three configurations of the robotic assembly system: 

(A) baseline operation without compensation, (B) AI-based kinematic error compensation, and  

 

Discussion  

The findings from the experimental results clearly indicate that each layer of the proposed 

system contributes uniquely to enhancing robotic precision. 

1. Baseline Performance 

The baseline robot performance (0.27 mm error) matches documented industrial norms, where 

uncorrected kinematic inaccuracies—such as joint offsets, link tolerances, and thermal drift—

cause misalignments in assembly tasks. This confirms the necessity of advanced calibration 

strategies in high-precision applications. 

2. AI-Based Kinematic Error Compensation 

The AI compensation stage reduces systematic, repeatable errors by learning the nonlinear 

mapping between joint configurations and deviations. The 67% improvement signals that the 

neural model successfully captures and compensates the robot’s inherent kinematic 

imperfections. This demonstrates that: 

• Systematic geometric and non-geometric errors are predictable, 

• Neural networks can effectively replace or augment classical DH-parameter calibration, 

• Offline calibration alone is insufficient to address real-time disturbances. 

3. Integrated Sensor Fusion 

The addition of real-time fusion (vision + force + encoder + IMU) yields a drastic improvement 

to 0.018 mm, showing that: 



Journal of Libyan Academy Bani Walid 2025 
 

 

J o u r n a l  o f  L i b y a n  A c a d e m y  B a n i  W a l i d  Page 280 

• AI compensates slow-varying or structural errors, 

• Sensor fusion corrects fast, random disturbances such as vibration, micro-

misalignment, or contact uncertainty, 

• Vision detects lateral drift, while force feedback confirms proper seating during 

insertion, 

• The UKF fusion method reliably integrates multi-rate data streams. 

This architecture proves that static AI compensation removes bias, while dynamic fusion 

removes noise—producing a highly stable, precise, and robust assembly process. 

4. Practical Implications 

• The sub-20-micron accuracy achieved is comparable to specialized micro-assembly 

platforms, demonstrating that general-purpose industrial arms can reach extreme 

precision when augmented with intelligence. 

• This reduces dependency on costly mechanical calibration and expensive high-rigidity 

robots. 

• The approach is suitable for electronics, automotive connectors, medical devices, and 

micro-fabrication. 

5. Future Directions 

• Online learning could allow the AI model to update continuously using fusion feedback. 

• Redundancy strategies (e.g., fallback to force-only correction) can improve robustness 

during camera occlusion. 

• Extending the framework to multi-arm collaborative assembly is a promising next step. 

 

7. Conclusion 

This paper presented an integrated solution for high-precision robotic assembly. An AI-driven 

kinematic model learned from calibration data substantially improved the robot’s baseline 

accuracy. A real-time sensor fusion scheme further refined the pose during execution. Our 

combined method achieved sub-0.02 mm placement errors in an assembly task, an order-of-

magnitude better than typical uncorrected accuracy. The approach is general and can be applied 

to various industries (automotive, electronics, medical devices) where precision is critical. 

Future development will focus on robustifying the system against sensor failures and 

automating data collection. Overall, AI-based compensation plus sensor fusion appears a 

promising strategy for the next generation of smart manufacturing. 

 

8. Recommendations 

Based on the experimental findings and the demonstrated improvements achieved through AI-

based calibration and multi-sensor fusion, the following recommendations are proposed: 

1. Adopt Hybrid AI–Sensor Fusion Systems in Precision Assembly 

Industries requiring sub-0.05 mm accuracy—such as electronics, automotive connectors, 

medical devices—should integrate AI-based kinematic error compensation with real-time 

sensor fusion to achieve high levels of consistency and precision. 

2. Implement Routine Calibration with Data-Driven Models 

Although traditional calibration reduces errors, the study shows that AI significantly enhances 

accuracy. Therefore: 

• Conduct periodic data collection using vision or laser trackers. 

• Retrain AI models after major changes in tools, loads, or workspace layout. 

• Use hybrid calibration (analytical + AI) to maintain long-term accuracy. 
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3. Enhance Robot Cells with Redundant Sensor Sources 

Real-time fusion demonstrated major improvements. To ensure robustness: 

• Equip the robot with at least one absolute sensor (vision) and one contact sensor 

(force/torque). 

• Add IMU sensors to compensate for vibrations or dynamic motion. 

• Utilize Kalman filtering or UKF algorithms for stable fusion under noise. 

4. Develop Automated Monitoring for Drift and Performance Degradation 

Long-term wear or temperature effects degrade accuracy. It is recommended to: 

• Integrate self-diagnosis routines that detect abnormal deviations. 

• Use residual error tracking to trigger automatic recalibration. 

• Log positioning errors continuously for predictive maintenance. 

5. Optimize Lighting and Marker Placement for Vision-Based Fusion 

Since camera feedback is critical: 

• Ensure controlled, uniform lighting to prevent occlusions. 

• Use high-contrast fiducial markers on components and tools. 

• Periodically validate camera calibration to avoid cumulative drift. 

6. Apply Real-Time Correction Strategies in Constrained or Uncertain Environments 

During assembly tasks involving tight clearances: 

• Utilize force-guided micro-adjustments during insertion. 

• Enable adaptive motion planning that responds to sensed disturbances. 

• Allow the controller to modify trajectories dynamically based on fused data. 

7. Invest in Scalable AI Training Pipelines 

To reduce time and cost: 

• Automate data collection during normal operation. 

• Use efficient sampling strategies (e.g., Latin hypercube) to cover the workspace. 

• Store training datasets for future model refinement and benchmarking. 

8. Expand the Approach to Multi-Robot and Collaborative Systems 

The proposed framework can be extended to: 

• Multi-arm coordinated assembly 

• Human–robot collaborative tasks 

• Distributed sensor networks across workcells 

This could further increase productivity and precision in complex manufacturing operations. 

9. Encourage Integration with Digital Twin Platforms 

Digital twins can simulate robot behavior before physical deployment. Incorporating your AI 

+ sensor fusion methods into digital twins will: 

• Allow virtual testing of calibration strategies 

• Predict performance under varied conditions 

• Reduce real-world trial-and-error 

10. Promote Standardization of AI-Driven Calibration Procedures 

For industrial adoption: 

• Develop guidelines for data collection, model training, and validation 

• Standardize sensor fusion architectures 

• Ensure compatibility with major robot manufacturers and controllers 

 

 

 

 



Journal of Libyan Academy Bani Walid 2025 
 

 

J o u r n a l  o f  L i b y a n  A c a d e m y  B a n i  W a l i d  Page 282 

References 

1. Chen, S., Sun, M., & Tian, Y. (2023). Error modeling and parameter calibration method for 

industrial robots based on 6-DOF position and orientation. Applied Sciences, 13(19), 

10901. https://doi.org/10.3390/app131910901 

2. Ul Haq, I., Carni, D. L., & Lamonaca, F. (2025). Intelligent robotic positioning through AI-

enhanced metrology: Integration of standards, sensor fusion, and adaptive calibration. Acta 

IMEKO, 14(3), 1–14. https://doi.org/10.21014/actaimeko.v14i3.2124 

3. Masalskyi, V., Dzedzickis, A., & Bučinskas, V. (2025). Hybrid mode sensor fusion for 

accurate robot positioning. Sensors, 25(10), 3008. https://doi.org/10.3390/s25103008 

4. Pa-im, K., & Rodkwan, S. (2020). An analysis of joint assembly geometric errors affecting 

end-effector for six-axis robots. Robotics, 9(2), 27. 

https://doi.org/10.3390/robotics9020027 

5. Tao, Y., Liu, H., Chen, S., Lan, J., & Xiao, W. (2023). An off-line error compensation 

method for absolute positioning accuracy of industrial robots based on differential 

evolution and deep belief networks. International Journal of Advanced Robotic Systems, 

20(3). https://doi.org/10.1177/17298806231164453 

6. Khanesar, M. A., Karaca, A., Yan, M., Piano, S., & Branson, D. (2025). Multi-objective 

intelligent industrial robot calibration using meta-heuristic optimization approaches. 

Robotics, 14(9), 129. https://doi.org/10.3390/robotics14090129 

7. Xu, X., Zhang, L., Yang, J., Cao, C., Wang, W., Ran, Y., Tan, Z., & Luo, M. (2022). A 

review of multi-sensor fusion SLAM systems. arXiv preprint arXiv:2011.14327. 

https://arxiv.org/abs/2011.14327 

8. Wang, M., Leung, K. Y., Liu, R., Song, S., Yuan, Y., Yin, J., Meng, M. Q.-H., & Liu, J. 

(2021). Dynamic tracking for microrobot with active magnetic sensor array. In Proceedings 

of the IEEE International Conference on Robotics and Automation (ICRA) (pp. 7288–

7294). IEEE. https://doi.org/10.1109/ICRA48506.2021.9561710 

9. Abdussalam Ali Ahmed, Abuali, T. M., & Belkher, A. A. A. (2025). The role of advanced 

robotics in enhancing human–machine collaboration. The Open European Journal of 

Engineering and Scientific Research (OEJESR), 1(1), 32–43. 

https://easdjournals.com/index.php/oejesr/article/view/22 

10. Eltaeb, M. (2025). Improving precision in robotic assembly through AI-based kinematic 

error compensation and real-time sensor fusion. Journal of Libyan Academy Bani Walid, 

1(4), 601–611. 

 

 

Compliance with ethical standards 

Disclosure of conflict of interest 

The authors declare that they have no conflict of interest. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of 

the individual author(s) and contributor(s) and not of JLABW and/or the editor(s). JLABW and/or the editor(s) 

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or 

products referred to in the content. 

 

https://doi.org/10.3390/app131910901
https://doi.org/10.21014/actaimeko.v14i3.2124
https://doi.org/10.3390/s25103008
https://doi.org/10.3390/robotics9020027
https://doi.org/10.3390/robotics14090129
https://easdjournals.com/index.php/oejesr/article/view/22

