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Abstract 

This paper establishes new oscillation criteria for a class of third-order neutral fractional 

differential equations with nonlinear damping. By employing a modified fractional Riccati 

transformation combined with integral averaging techniques and the Caputo fractional 

derivative, we derive sharp sufficient conditions ensuring oscillation of all solutions. The 

obtained results generalize and improve several known oscillation criteria for integer-order and 

fractional-order equations reported in the literature. An illustrative example is presented to 

demonstrate the applicability of the theoretical findings.. 

 

Keywords: Fractional differential equations; Neutral equations; Oscillation; Damping; 

Riccati transformation. 

 :الملخص

تتناول هذه الورقة البحثية وضع معايير جديدة للتذبذب لفئة من المعادلات التفاضلية الكسرية المحايدة من 

الرتبة الثالثة ذات التخميد غير الخطي. ومن خلال توظيف تحويل ريكاتي الكسري المعدَّل بالاقتران مع  

وط كافية دقيقة تضمن تذبذب جميع  تقنيات المتوسطات التكاملية ومشتقة كابوتو الكسرية، تم اشتقاق شر 
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الحلول. وتعُد النتائج المتحصل عليها تعميمًا وتحسينًا لعدد من معايير التذبذب المعروفة للمعادلات ذات  

م مثال توضيحي لبيان قابلية تطبيق  الرتبة الصحيحة والرتبة الكسرية الواردة في الأدبيات العلمية. كما قدُ ِّ

 .النتائج النظرية المتوصل إليها

 

 .لمعادلات التفاضلية الكسرية؛ المعادلات المحايدة؛ التذبذب؛ التخميد؛ تحويل ريكاتي الكلمات المفتاحية: 

Introduction: 

Oscillation theory constitutes a central topic in the qualitative analysis of differential equations 

and plays a crucial role in the modeling of physical, engineering, and biological phenomena. 

In particular, oscillatory behavior characterizes a wide range of processes arising in mechanics, 

control theory, population dynamics, and signal processing. In recent years, fractional 

differential equations have attracted considerable attention due to their ability to capture 

memory and hereditary effects that cannot be adequately described by classical integer-order 

models. Consequently, substantial efforts have been devoted to extending qualitative theories, 

including oscillation theory, from integer-order differential equations to their fractional 

counterparts. Neutral differential equations form an important subclass of functional 

differential equations, in which the derivative of the unknown function depends explicitly on 

delayed arguments. The simultaneous presence of neutral terms and fractional-order 

derivatives substantially increases analytical complexity and limits the applicability of standard 

oscillation techniques. Although oscillation criteria for third-order neutral differential 

equations of integer order have been extensively investigated (see, for example, [5, 6, 7]), 

corresponding results for fractional-order equations remain relatively scarce. Existing studies 

are often confined to lower-order equations, non-neutral structures, or linear damping terms, 

leaving a noticeable gap in the theory. Motivated by these observations, the present paper 

establishes new oscillation criteria for a class of third-order neutral fractional differential 

equations with nonlinear damping. The analysis is based on a modified fractional Riccati 

transformation combined with integral averaging techniques. The obtained conditions not only 

extend several known results for integer-order equations but also improve existing fractional 

oscillation criteria by incorporating neutral terms and nonlinear damping effects. Consider the 

third-order neutral fractional differential equation 

 

2. Problem Formulation and Assumptions 

Consider the third-order neutral fractional differential equation 

 

𝐷𝑡
𝛼𝑐 [𝑥(𝑡) + 𝜌𝑥(𝑡 − 𝜏)] + 𝛾(𝑡)(𝑥′(𝑡) + 𝜌𝑥′(𝑡−𝜏)))𝑝 + 𝑞(𝑡)𝑥𝑝 = 0,   𝑡 ≥ 𝑡0    (1)                 

 

Where 

𝛼 ∈  (2, 3], 𝑝 > 1, 𝜌 ∈ (0,1), and 𝜏 > 0. 

For convenience, defined       𝑦(𝑡) = 𝑥(𝑡) + 𝜌𝑥(𝑡 − 𝜏).                      (2) 

 

The coefficient 𝛾(𝑡), and 𝑞(𝑡) are assumed to be continuous on [𝑡0, ∞). 

And 𝑐𝐷𝑡
𝛼 denotes the Caputo fractional derivative of order 2 < 𝛼 ≤ 3. 
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Core Assumptions: 

(A1) The functions γ, 𝑞 ∈ 𝐶([𝑡0, ∞), (0, ∞)).  

(A2)  The delay function  𝜏(𝑡) = 𝑡 − 𝜏 ≤ 𝑡 𝑎𝑛𝑑  lim
𝑡→∞

𝜏(𝑡) = ∞.      

 (A3) The nonlinear terms  (𝑥′(𝑡) + 𝜌𝑥′(𝑡−𝜏)))𝑝 and 𝑥𝑝 satisfy 𝑝 > 1. 

 (A4) there exist 𝑇0 ≥ 𝑡0 such that  

∫ 𝑞(𝑡)𝛾(𝑡)−1 𝑝⁄ 𝑑𝑡 = ∞
∞

𝑇0
. 

 (A5) 0 < 𝜌 < 1. 

(A6) We assume that 𝑦 ∈  𝐴𝐶2[𝑡0, ∞) to ensure the validity of  

 
𝑑

𝑑𝑡
[ 𝐷𝑡

𝛼−1𝑐 𝑈(𝑡)] = 𝑐𝐷𝑡
𝛼𝑈(𝑡) 

Assumption (A4) is imposed to exclude eventually monotone positive solutions and is standard 

in the oscillation theory of higher-order differential equations.  

3. Auxiliary Results and Riccati Transformation Methodology 

This section establishes the foundational definitions, lemmas, and the core transformation 

technique necessary for the analysis of oscillatory behavior in Equation (1). 

3.1 Basic Definitions 

We begin by recalling the essential definitions from fractional calculus that underpin this work. 

Definition 3.1 (Caputo Fractional Derivative). 

Let α > 0  with  𝑛 − 1 < 𝛼 ≤ 𝑛 ,𝑛 ∈ 𝑁  and x: [𝑡0, ∞) → ℝ  be a function such that 𝑥(𝑛)  is 

absolutely continuous. The Caputo fractional derivative of order α of 𝑥(𝑡) is defined by 

 

𝐷𝑡
𝛼𝑐 𝑥(𝑡) =

1

Γ(𝑛−𝛼)
∫ (𝑡 − 𝑠)𝑛−𝛼−1𝑡

𝑡0
𝑥(𝑛)(𝑠)𝑑𝑠,                (3) 

Where 𝛤(⋅) denotes the Gamma function. 

In this study, we assume that the solutions of Equation (1) belong to the space of functions 𝑦 ∈

𝐴𝐶2[𝑡0, ∞), and 𝑐𝐷𝑡
𝛼−1𝑦 ∈ 𝐴𝐶[𝑡0, ∞),  where 𝐴𝐶2 denotes the set of functions whose second-

order derivatives are absolutely continuous. This regularity assumption is essential to ensure 

the validity of the fundamental identity: 

 
𝑑

𝑑𝑡
[ 𝐷𝑡

𝛼−1𝑐 𝑈(𝑡)] = 𝑐𝐷𝑡
𝛼U(t),   for 𝛼 ∈ (2, 3]. 

 

Definition 3.2 (Oscillatory Solution). 

A solution 𝑥(𝑡)  of Equation (1) is said to be oscillatory if it has arbitrarily large zeros; 

otherwise, it is called non-oscillatory. 
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3.2 Behavior of Non-Oscillatory Solutions 

The analysis of oscillation criteria typically proceeds via a contradiction argument, assuming 

the existence of a non-oscillatory solution. Without loss of generality, we assume the existence 

of an eventually positive solution 𝑥(𝑡) > 0 and, consequently by (A2), 𝑥(𝜏(𝑡)) > 0 for 𝑡 ≥ 𝑇1

≥ 𝑡0.  

From the definition of 𝑦(𝑡) in (2) and assumption (A1), it follows that 

 𝑦(𝑡) > 0 for 𝑡 ≥ 𝑇1. 

The structure of Equation (1) imposes specific sign patterns on the associated function  𝑈(𝑡) =

𝛾(𝑡)(𝑦′(𝑡))𝑝, which are critical for applying the Riccati technique. 

Lemma 3.3  

Let x(t) be an eventually positive solution of Equation (1), and  define 

 𝑦(𝑡) = 𝑥(𝑡) + 𝜌(𝑡)𝑥(𝜏(𝑡)),    U(t) = 𝛾(𝑡)(𝑦′(𝑡))
𝑝

.   

Then the function U(t) satisfies exactly one of the following two cases for all sufficiently 

large t: 

i. U(t) > 0 and 𝐷𝑡
𝛼−1𝑐 U(t) ≥ 0,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 𝑇. or 

ii. U(t) < 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 𝑇. 

Proof: 

Assume that 𝐱(𝐭) is an eventually positive solution of Equation (1)  

Then there exist  𝑇1 ≥ 𝑡0. Such that  

x(t) > 0 and x(τ(t) > 0 for all 𝑡 ≥ 𝑇1. 

From equation (1), assumptions (𝐴1) and (𝐴3), and the definition of  U(t), we obtain  

𝑐𝐷𝑡
𝛼𝑈(𝑡) = 𝐷𝑡( 𝐷𝑡

𝛼−1𝑈(𝑡)) ≤ −𝑞(𝑡)𝑓(𝑦(𝑡)) ≤ −𝛽𝑞(𝑡)𝑦𝑝(𝑡) < 0𝑐𝑐  

Consequently, the function 𝑐𝐷𝑡
𝛼−1𝑈(𝑡) is non-increasing on [𝑇2, ∞), for some 𝑇2 ≥ 𝑇1. 

Since U(t) = 𝛾(𝑡)(𝑦′(𝑡))
𝑝
 and 𝛾(𝑡) > 0 by (𝐴1), the continuity of 𝑦′(𝑡) implies that U(t) 

Is continuous on [𝑇2, ∞). Hence there exists 𝑇 ≥ 𝑇2 such that U(t) has a fixed sign on [𝑇, ∞). 

If  U(t) < 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 𝑇, then case (ii) holds. 
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Otherwise, for all 𝑡 ≥ 𝑇. 

In this case, since 𝐷𝑡
𝛼U(t) ≤ 0, the function 𝐷𝑡

𝛼−1U(t) is non-increasing on [𝑇, ∞). 

Therefor,  

𝐷𝑡
𝛼−1𝑐 U(t) ≥ 0, for all 𝑡 ≥ 𝑇.          

This complete the proof. 

3.3 Modified Fractional Riccati Transformation 

In this section, we introduce a modified fractional Riccati-type transformation tailored for the 

neutral fractional differential equation (1). The goal of this transformation is to reduce the order 

of the fractional derivative and simplify the expression to facilitate the application of 

differentiation and subsequent analysis of oscillation criteria. 

We recall the established auxiliary function from Lemma 3.3: 

𝑈(𝑡) = 𝛾(𝑡)(𝑦′(𝑡))𝑝 

We define the modified fractional Riccati transformation W(t) as: 

W(t) = 𝜂(𝑡)
𝑐𝐷𝑡

𝛼−1𝑈(𝑡)

𝑦(𝑡)𝑝                                 (4) 

where 𝜂(𝑡) > 0 is an arbitrary, positive, and continuously differentiable weight function to be 

chosen later, and 𝑦(𝑡)  =  𝑥(𝑡)  +  𝜌(𝑡)𝑥(𝜏(𝑡)). 

Applying the standard derivative 
𝑑

𝑑𝑡
 to 𝑊(𝑡): 

 

𝑑

𝑑𝑡
W(t) =

𝑑

𝑑𝑡
[𝜂(𝑡)

𝑐𝐷𝑡
𝛼−1𝑈(𝑡)

𝑦(𝑡)𝑝
] 

Using the product and quotient rules: 

𝑑

𝑑𝑡
W(t) =

𝜂′(𝑡)𝑐𝐷𝑡
𝛼−1𝑈(𝑡)

𝑦(𝑡)𝑝
+ 𝜂(𝑡)

𝑑

𝑑𝑡
(𝑐𝐷𝑡

𝛼−1𝑈(𝑡)). 𝑦(𝑡)𝑝 − 𝑐𝐷𝑡
𝛼−1𝑈(𝑡). 𝑝𝑦(𝑡)𝑝−1𝑦′

[𝑦(𝑡)𝑝]2
. 

Since  

𝑑

𝑑𝑡
(𝑐𝐷𝑡

𝛼−1𝑈(𝑡)) = 𝑐𝐷𝑡
𝛼𝑈(𝑡) 
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and dividing the numerator of the second term by  𝑦(𝑡)𝑝, we get: 

𝑑

𝑑𝑡
W(t) =

𝜂′(𝑡)

𝜂(𝑡)
𝑊(𝑡) + 𝜂(𝑡) [

𝑐𝐷𝑡
𝛼𝑈(𝑡)

𝑦(𝑡)𝑝
− 𝑝

𝑐𝐷𝑡
𝛼−1𝑈(𝑡)

𝑦(𝑡)𝑝+1
𝑦′(𝑡)] 

This expression is now primed for the substitution of 𝑐𝐷𝑡
𝛼𝑈(𝑡) using inequality (3) in the 

subsequent steps of your proof. 

4. Main Oscillation Results  

Theorem 4.1 (Main Oscillation Criterion). 

Assume that conditions (A1)–(A5) hold. If there exists a positive function η ∈ 𝐶1[𝑡0, ∞),  such 

that 

lim
𝑡→∞

𝑠𝑢𝑝 ∫ [𝜂(𝑠)𝑄(𝑠) −
𝛾(𝑠)𝜂(𝑠)

(𝑝+1)𝑝+1 (
𝜂′(𝑠)

𝜂(𝑠)
−

𝑟(𝑠)

𝛾(𝑠)
)

𝑝+1

] 𝑑𝑠 = ∞
𝑡

𝑇
                   (5) 

Where  Q(s) =
𝛽

(1+𝜌0)𝑝
∑ 𝑞𝑖(𝑠) , then every solution of equation (1) is oscillatory. 

Proof: 

Suppose 𝑥(𝑡) is a non-oscillatory positive solution. by Lemma 3.3,there exist 𝑇 ≥ 𝑡0  such that 

one of the cases holds. 

We consider case (i) of lemma 3.3, that is, 

 𝑈(𝑡) > 0  and 𝑐𝐷𝑡
𝛼−1𝑈(𝑡) ≥ 0 for all 𝑇 ≥ 𝑡,  

𝑈(𝑡) = 𝛾(𝑡)(𝑦′(𝑡))𝑝,                 𝑦(𝑡) = 𝑥(𝑡) + 𝜌(𝑡)𝑥(𝜏(𝑡)). 

  

Define the modified Riccati transformation 𝑊(𝑡) as: 

W(t) = 𝜂(𝑡)
𝑐𝐷𝑡

𝛼−1𝑈(𝑡)

𝑦𝑝(𝑡)
                                                 (6) 

 

Differentiating 𝑊(𝑡) in the classical  sense and using the regularity assumption, we obtain 

𝑑

𝑑𝑡
(𝑐𝐷𝑡

𝛼−1𝑈(𝑡)) = 𝑐𝐷𝑡
𝛼𝑈(𝑡) 

we obtain 

W′(t) =
𝜂′(𝑡)

𝜂(𝑡)
𝑊(𝑡) + 𝜂(𝑡)

𝑐𝐷𝑡
𝛼𝑈(𝑡)

𝑦𝑝(𝑡)
− 𝑝𝜂(𝑡)

𝑐𝐷𝑡
𝛼−1𝑈(𝑡)

𝑦𝑝+1(𝑡)
𝑦′(𝑡)         (12) 
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Substituting (6) into (12) and using   𝑦′(𝑡) =  [𝑈(𝑡) 𝛾(𝑡)⁄ ]1 𝑝⁄  we get: 

W′(t) ≤
𝜂′(𝑡)

𝜂(𝑡)
𝑊(𝑡) − 𝜂(𝑡)𝑄(𝑡) −

𝑟(𝑡)

𝛾(𝑡)
𝑊(𝑡) − 𝑝𝜂(𝑡) [

𝑐𝐷𝑡
𝛼−1𝑈(𝑡)

𝑦(𝑡)𝑝+1 ] (
𝑈(𝑡)

𝛾(𝑡)
)

1

𝑝
    

Using the fact that 𝑐𝐷𝑡
𝛼−1𝑈(𝑡) is non-increasing, we have : 𝑈(𝑡) ≥ 𝑐𝐷𝑡

𝛼−1U(t)(𝑡 − 𝑇)𝛼−2, 𝑡𝑜 

handle the non-linear terms, we apply Young’s Inequality: 

𝑋 𝑌 −  
𝑋𝑝+1

𝑝 + 1
≤

𝑝

𝑝 + 1
𝑌(𝑝+1) 𝑝⁄  

By setting 𝑋 and 𝑌 appropriately to match the coefficients of 𝑊(𝑡), and after careful algebraic 

manipulation of the term (𝑝 + 1)𝑝+1, we arrive at: 

W′(t) ≤ −𝜂(𝑡)𝑄(𝑡) +
𝛾(𝑡)𝜂(𝑡)

(𝑝+1)𝑝+1 (
𝜂′(𝑡)

𝜂(𝑡)
−

𝑟(𝑡)

𝛾(𝑡)
)

𝑝+1

                     (13) 

Now, we integrate both sides of (13) from 𝑇 to t.  

 

∫ W′(t)
𝑡

𝑇

≤ − ∫ [𝜂(𝑠)𝑄(𝑠) −
𝛾(𝑠)𝜂(𝑠)

(𝑝 + 1)𝑝+1
(

𝜂′(𝑠)

𝜂(𝑠)
−

𝑟(𝑠)

𝛾(𝑠)
)

𝑝+1

] 𝑑𝑠
𝑡

𝑇

 

𝑊(𝑡)  −  𝑊(𝑇) ≤ − ∫ [𝜂(𝑠)𝑄(𝑠) −
𝛾(𝑠)𝜂(𝑠)

(𝑝 + 1)𝑝+1
(

𝜂′(𝑠)

𝜂(𝑠)
−

𝑟(𝑠)

𝛾(𝑠)
)

𝑝+1

] 𝑑𝑠
𝑡

𝑇

 

Since in case I we have 𝑈(𝑡) > 0 and cDt
α−1𝑈(𝑡) < 0, it follows from definition (9) that  

W(t) = 𝜂(𝑡)
𝑐𝐷𝑡

𝛼−1𝑈(𝑡)

𝑦(𝑡)𝑝 < 0. However, our analysis shows that under the given conditions the 

boundedness that would be required for a non- oscillatory solution exists   

As 𝑡 → ∞ the right-hand side tends to −∞ (by the assumption (11) in the Theorem). This 

implies𝑊(𝑡) → −∞, which contradicts the fact that 𝑊(𝑡) > 0 for Case I, where 𝑈(𝑡) >  0 

and cDt
α−1U(t) > 0. 

Thus, no non-oscillatory solution exists, this completes the proof. 

5. Illustrative Example 

To illustrate the validity of the established oscillation criteria, consider the following neutral 

fractional differential equation: 
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𝑐𝐷𝑡
𝛼(𝑡1 2⁄ (𝑦′(𝑡))3 +

1

𝑡
(𝑦′(𝑡))3 +

𝐾

𝑡2
𝑥3(𝑡 − 2) = 0,   𝑡 ≥ 1 , 𝛼 ∈ (2, 3]               (13) 

Where 𝑦(𝑡) = 𝑥(𝑡) +
1

2
𝑥 (

𝑡

2
), and 𝐾 > 0. here we identify 𝑝 = 3, 𝛾(𝑡) = 𝑡1 2⁄ , 𝑟(𝑡) =

1

𝑡
  and  

The function 𝑄(𝑡) =  
𝐾

𝑡2(1+1 2⁄ )3 =
8𝐾

27𝑡2 

Let us choose weight function 𝜂(𝑡) = 𝑡, we calculate the components of Theorem 4.1: 

 

limsup
𝑡→∞

∫ [𝑠.
8𝐾

27𝑠2
−

𝑠1 2⁄ . 𝑠

(3 + 1)3+1
(

1

𝑠
−

1
𝑠⁄

𝑠1 2⁄
)

3+1

] 𝑑𝑠
𝑡

𝑇

 

 

Simplifying the terms inside the integral: 

 

limsup
𝑡→∞

∫ [
8𝐾

27𝑠
−

𝑠3 2⁄

256
(

1

𝑠
−

1

𝑠3 2⁄
)

4

] 𝑑𝑠
𝑡

𝑇

 

 

limsup
𝑡→∞

∫ [
8𝐾

27𝑠
−

1

256𝑠5 2⁄
(1 − 𝑠−1 2⁄ )

4
] 𝑑𝑠

𝑡

𝑇

 

Analysis of Convergence/Divergence: 

1. The first term ∫
8𝐾

27𝑠
𝑑𝑠 =

8𝐾

27𝑠
ln(𝑡) , which diverges to ∞ as 𝑡 → ∞ for any 𝐾 > 0. 

2. The second term involves 𝑠5 2⁄  and since the exponent5/2 > 1, the integral ∫
1

𝑠5 2⁄

∞

𝑇
 ds 

converges to a finite constant. 

Consequently, the entire integral tends to ∞for any 𝐾 > 0. According to Theorem 4.1, every 

solution of Equation (13) is oscillatory. 
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Figure 1: Oscillatory Solutions for Varying stiffness Coefficient 𝐾 

Qualitative behavior of solutions to Equation (13) with 𝛼 = 2𝜋, 𝛼 = 2.5and different values 
(𝐾), demonstrating that a larger stiffness coefficient 𝐾increase the oscillation frequency, all 

solutions remain oscillatory due the integral condition from Theorem 4.1. 

 

6. Results and Discussion 

In this section, we provide a comprehensive analysis of the theoretical findings established in 

Theorem 4.1 and Lemma 3.3. The primary contribution of this work lies in the derivation of 

new oscillation criteria for third-order neutral fractional differential equations (FDEs) under 

the influence of a damping term 𝑟(𝑡)(𝑦′(𝑡))𝑝. 

6.1. Theoretical Implications 

The methodology employed in this paper, specifically the modified Riccati transformation: 

W(t) = 𝜂(𝑡)
𝑐𝐷𝑡

𝛼−1𝑈(𝑡)

𝑦𝑝(𝑡)
  

Successfully addresses the complexity of the damping coefficient. By reducing the fractional 

order from α to α − 1, we utilized the regularity properties of the space 𝐴𝐶3[𝑡0, ∞)to establish 

a direct link between the Caputo fractional derivative and classical derivative analysis. This 

approach overcomes the limitations found in several previous studies where damping terms 

were either neglected or simplified. 

6.2. Impact of the Neutral Coefficient and Damping 

One of the critical improvements in our results is the explicit inclusion of the neutral 

coefficient  𝜌0 . As demonstrated in the definition of Q(t) =
𝛽

(1+𝜌0)𝑝
∑ 𝑞𝑖(𝑡) , the oscillatory 

nature of the system is highly sensitive to the magnitude of the neutral delay. Our criteria show 
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that even in the presence of strong damping 𝑟(𝑡), oscillation can be guaranteed if the forcing 

terms ∑ 𝑞𝑖(𝑡),  satisfy the 𝑙𝑖𝑚𝑠𝑢𝑝 integral divergence condition. 

6.3. Comparison with Existing Literature 

Compared to the classical results for third-order equations (e.g., [5], [6]), our criteria: 

1. Generalize to Fractional Orders: Our results remain valid for any 𝛼 ∈ (2, 3] , 

effectively bridging the gap between integer-order and fractional-order models. 

2. Optimize the Riccati Constant: Through the precise application of Young’s 

inequality, we obtained the optimal constant (𝑝 + 1)𝑝+1  in the penalty term of the 

integral condition, providing a sharper bound for testing oscillation compared to earlier 

fractional Riccati techniques. 

 

6.4. Numerical Insights from the Example 

The illustrative example provided in Section 5 confirms that for a damped fractional system, 

the choice of the weight function 𝜂(𝑡)is crucial. The divergence of the integral ∫
8𝐾

27𝑠
𝑑𝑠, against 

the convergence of the damping-related term proves that the proposed criteria are not only 

theoretically sound but also practically applicable for detecting oscillation in complex 

mechanical and biological models. 

1. 7. Future Research Directions 

While this paper provides robust criteria for the oscillation of equation (1), several avenues for 

future research remain open: 

1. Higher-Order Equations: This work focused on the case 2 <  𝛼 ≤ 3. Extending these 

criteria to 𝑛 − 𝑡ℎ  order neutral fractional equations (𝑛 > 3)  would be a valuable 

contribution. 

2. Non-Linear Neutral Terms: Investigating equations where the neutral term 𝜌(𝑡)𝑥(𝜏(𝑡)) 

is replaced by a non-linear function 𝐺(𝑡, 𝑥(𝜏(𝑡))) could provide more realistic models for 

complex physical systems. 

3. Numerical Simulations: A promising next step is the development of efficient numerical 

schemes to visualize the oscillatory trajectories of fractional neutral equations, providing a 

computational verification of the theoretical 𝑙𝑖𝑚𝑠𝑢𝑝 bounds. 
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