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Abstract

This paper establishes new oscillation criteria for a class of third-order neutral fractional
differential equations with nonlinear damping. By employing a modified fractional Riccati
transformation combined with integral averaging techniques and the Caputo fractional
derivative, we derive sharp sufficient conditions ensuring oscillation of all solutions. The
obtained results generalize and improve several known oscillation criteria for integer-order and
fractional-order equations reported in the literature. An illustrative example is presented to
demonstrate the applicability of the theoretical findings..
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Introduction:

Oscillation theory constitutes a central topic in the qualitative analysis of differential equations
and plays a crucial role in the modeling of physical, engineering, and biological phenomena.
In particular, oscillatory behavior characterizes a wide range of processes arising in mechanics,
control theory, population dynamics, and signal processing. In recent years, fractional
differential equations have attracted considerable attention due to their ability to capture
memory and hereditary effects that cannot be adequately described by classical integer-order
models. Consequently, substantial efforts have been devoted to extending qualitative theories,
including oscillation theory, from integer-order differential equations to their fractional
counterparts. Neutral differential equations form an important subclass of functional
differential equations, in which the derivative of the unknown function depends explicitly on
delayed arguments. The simultaneous presence of neutral terms and fractional-order
derivatives substantially increases analytical complexity and limits the applicability of standard
oscillation techniques. Although oscillation criteria for third-order neutral differential
equations of integer order have been extensively investigated (see, for example, [5, 6, 7]),
corresponding results for fractional-order equations remain relatively scarce. Existing studies
are often confined to lower-order equations, non-neutral structures, or linear damping terms,
leaving a noticeable gap in the theory. Motivated by these observations, the present paper
establishes new oscillation criteria for a class of third-order neutral fractional differential
equations with nonlinear damping. The analysis is based on a modified fractional Riccati
transformation combined with integral averaging techniques. The obtained conditions not only
extend several known results for integer-order equations but also improve existing fractional
oscillation criteria by incorporating neutral terms and nonlinear damping effects. Consider the
third-order neutral fractional differential equation

2. Problem Formulation and Assumptions
Consider the third-order neutral fractional differential equation

‘DE[x(t) + px(t = D] +y (O (x'(¢) + px' )P +q(O)xP =0, t 2ty (1)

Where
a € (2,3],p>1,p€(0,1),and T > 0.
For convenience, defined  y(t) = x(t) + px(t — 7). (2)

The coefficient y(t), and q(t) are assumed to be continuous on [t,, ).
And ¢Df* denotes the Caputo fractional derivative of order 2 < a < 3.
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Core Assumptions:
(A1) The functions y,q € C([ty, ), (0, )).
(A2) The delay function 7(t) =t —t <t and tlim 7(t) = oo.
(A3) The nonlinear terms (x'(t) + px'®~))P and xP satisfy p > 1.
(A4) there exist Ty > t, such that
® -1/ —
[7 q@y @ Ydt = oo.
(A5)0<p<1.

(A6) We assume that y € AC?[t,, o) to ensure the validity of

d
2l ‘DETIUB)] = cDFU(t)

Assumption (A4) is imposed to exclude eventually monotone positive solutions and is standard
in the oscillation theory of higher-order differential equations.

3. Auxiliary Results and Riccati Transformation Methodology

This section establishes the foundational definitions, lemmas, and the core transformation
technique necessary for the analysis of oscillatory behavior in Equation (1).

3.1 Basic Definitions
We begin by recalling the essential definitions from fractional calculus that underpin this work.

Definition 3.1 (Caputo Fractional Derivative).
Leta >0 withn—1<a <n,n€N and x: [ty,©) = R be a function such that x( is
absolutely continuous. The Caputo fractional derivative of order o of x(t) is defined by

DEX() = gy o, (£ = )" x M (5)ds, (3)

Where I'(+) denotes the Gamma function.
In this study, we assume that the solutions of Equation (1) belong to the space of functions y €
AC?[ty, ), and cDF 1y € AC[ty, ), where AC? denotes the set of functions whose second-
order derivatives are absolutely continuous. This regularity assumption is essential to ensure
the validity of the fundamental identity:

S [“DETLU(D)] = eDEU(), for a € (2,3].

Definition 3.2 (Oscillatory Solution).
A solution x(t) of Equation (1) is said to be oscillatory if it has arbitrarily large zeros;
otherwise, it is called non-oscillatory.
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3.2 Behavior of Non-Oscillatory Solutions

The analysis of oscillation criteria typically proceeds via a contradiction argument, assuming
the existence of a non-oscillatory solution. Without loss of generality, we assume the existence
of an eventually positive solution x(t) > 0 and, consequently by (A2), x(z(t)) > 0fort > T;
> to.

From the definition of y(t) in (2) and assumption (A1), it follows that
y(t)>O0fort >T;.

The structure of Equation (1) imposes specific sign patterns on the associated function U(t) =
y(®)(Y'(t))P, which are critical for applying the Riccati technique.

3.3 Lemma

Let x(t) be an eventually positive solution of Equation (1), and define

y(&) = x(®) + p(Ox(z(t)), U® =y (y'®)".

Then the function U(t) satisfies exactly one of the following two cases for all sufficiently
large t:

i. UM >0and ‘DF1U({) >0, forallt >T.or
. U®)<O0 forallt=>T.

Proof:

Assume that x(t) is an eventually positive solution of Equation (1)

Then there exist T; = t,. Such that

x(t) > 0 and x(t(t) > 0 forall t > T;.

From equation (1), assumptions (A;) and (A3), and the definition of U(t), we obtain
cDFU(E) = “De(DFTIU()) < —q(Of (1) < —La()yP () <O

Consequently, the function cDf~1U(t) is non-increasing on [T, ), for some T, > T;.
Since U(t) = y(t) (y’(t))p and y(t) > 0 by (A,), the continuity of y'(t) implies that U(t)

Is continuous on [T,, ). Hence there exists T = T, such that U(t) has a fixed sign on [T, o).

If U(t) <O forallt>T,then case (ii) holds.
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Otherwise, forall t > T.

In this case, since DU(t) < 0, the function D¥~1U(t) is non-increasing on [T, ).
Therefor,

‘DF1U(t) >0, forall t > T.

This complete the proof.

3.3 Modified Fractional Riccati Transformation

In this section, we introduce a modified fractional Riccati-type transformation tailored for the
neutral fractional differential equation (1). The goal of this transformation is to reduce the order
of the fractional derivative and simplify the expression to facilitate the application of
differentiation and subsequent analysis of oscillation criteria.

We recall the established auxiliary function from Lemma 3.3:

U@ =y@®OQ'®)"
We define the modified fractional Riccati transformation W(t) as:

cDEtu(t)

w(o) = () 2

(4)

where 17(t) > 0 is an arbitrary, positive, and continuously differentiable weight function to be
chosen later, and y(t) = x(t) + p(t)x(z(t)).
Applying the standard derivative % to W(t):

cDEFU(t)
LW = [() oL
Using the product and quotient rules:
d
d n'(©)cDE1U(b) —(eDFU®). y(©P = cDETU®). py )Py
e MGHE '
Since

d D&y = cDE&U
2 (eDETTU(®) = eDFU()
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and dividing the numerator of the second term by y(t)P, we get:

d. ) eDEU()  eDEU(®)
VO = OO TP g

y'(t)

This expression is now primed for the substitution of ¢cDFU(t) using inequality (3) in the
subsequent steps of your proof.

4. Main Oscillation Results

Theorem 4.1 (Main Oscillation Criterion).

Assume that conditions (A1)—(A5) hold. If there exists a positive function n € C[t,, ), such
that

_y®)ns) (m(s) () p“] _
lim sup [7 |n()Q() ~ EE (T —73) |ds = 5)
Where Q(s) = (1+p > ——> qi(s) , then every solution of equation (1) is oscillatory.
Proof:

Suppose x(t) is a non-oscillatory positive solution. by Lemma 3.3 there exist T > t; such that
one of the cases holds.

We consider case (i) of lemma 3.3, that is,

U(t) >0 and cDF1U(t) = 0 forall T > t,

u) =y )", y(®) = x(t) + p(Ox(z(®)).

Define the modified Riccati transformation W (t) as:

cDEtu(t)

W) = (0 25

(6)

Differentiating W (t) in the classical sense and using the regularity assumption, we obtain
d a—-1 a
a(th U(t)) = cDFU(t)

we obtain

Oy (r) +n(e) 2LLO _ <oﬂ—%%V) (12)

!
wi® = n(t) yP () P*1(¢)
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Substituting (6) into (12) and using y'(t) = [U(t)/y(t)]/P we get:

1

"_(t) eDEUD] (VD)p
w'(©) < TEW® - (e - ZZw© - pn(©) 252 (53)
Using the fact that cD#~1U(t) is non-increasing, we have : U(t) = cDF 1U(t)(t — T)* 2, to
handle the non-linear terms, we apply Young’s Inequality:
Xp+1

< Ly(ml)/p
p+1 p+1

By setting X and Y appropriately to match the coefficients of W (t), and after careful algebraic
manipulation of the term (p + 1)?*1, we arrive at:

: 3 yOn@® ('@ _ ro\"*!
W' < -n©Q® + L% (35 - 15) (13)

Now, we integrate both sides of (13) from T to t.

‘ ‘ ! p+1
fWr(t)g—f [U(S)Q(s)— y(s)n(s) (n (s) r(s)> ]ds

@+ P\ nGs)  y(s)

! p+1
we -wns-[ [n(s)Q(S)— (L =3) ]ds

@+ DP () y(s)

Since in case I we have U(t) > 0 and cDZ1U(t) < 0, it follows from definition (9) that

cDfu(t)

W) = (o P

boundedness that would be required for a non- oscillatory solution exists

< 0. However, our analysis shows that under the given conditions the

As t — oo the right-hand side tends to —oo (by the assumption (11) in the Theorem). This
impliesW (t) —» —oo, which contradicts the fact that W (t) > 0 for Case I, where U(t) > 0
and cDZ1U(t) > 0.

Thus, no non-oscillatory solution exists, this completes the proof.
S. Illustrative Example

To illustrate the validity of the established oscillation criteria, consider the following neutral
fractional differential equation:
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cDE(tY*(y' (1)) +:(y ®)° + ut ;x°(t=2)=0, t=1,a € (23] (13)

Where y(t) = x(t) + Ex (E)’ and K > 0. here we identify p = 3,y(t) = tV2,r(¢t) = % and

] K 8K
The funCtIOIl Q(t) = t2(1+1/2)3 = 27t2

Let us choose weight function n(t) = t, we calculate the components of Theorem 4.1:

o 8k stzs (1 1\
l — e I
”triso‘.fpr 52752 (3 + 1)P+t (s 51/2> °

Simplifying the terms inside the integral:

3/2 1 4
hrf‘f;‘pf [275 B 256 s 53/2) lds

limsup

- f[27s 25655/2(1_3_1/2)]015

Analysis of Convergence/Divergence:

1. The first term f%ds = %ln(t) , which diverges to o as t — oo for any K > 0.

2. The second term involves s%/2 and since the exponent5/2 > 1, the integral fToo 55% ds

converges to a finite constant.

Consequently, the entire integral tends to cofor any K > 0. According to Theorem 4.1, every
solution of Equation (13) is oscillatory.
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Figure 1: Oscillatory Solutions for Varying stiffness Coefficient K
Qualitative behavior of solutions to Equation (13) with a« = 2, a = 2.5and different values
(K), demonstrating that a larger stiffness coefficient Kincrease the oscillation frequency, all

solutions remain oscillatory due the integral condition from Theorem 4.1.

6. Results and Discussion

In this section, we provide a comprehensive analysis of the theoretical findings established in
Theorem 4.1 and Lemma 3.3. The primary contribution of this work lies in the derivation of
new oscillation criteria for third-order neutral fractional differential equations (FDEs) under
the influence of a damping term r(t) (y'(t))P.

6.1. Theoretical Implications
The methodology employed in this paper, specifically the modified Riccati transformation:

cDE1U(t)

WO = 10— 50

Successfully addresses the complexity of the damping coefficient. By reducing the fractional
order from o to a — 1, we utilized the regularity properties of the space AC3[t,, ©)to establish
a direct link between the Caputo fractional derivative and classical derivative analysis. This
approach overcomes the limitations found in several previous studies where damping terms
were either neglected or simplified.

6.2. Impact of the Neutral Coefficient and Damping
One of the critical improvements in our results is the explicit inclusion of the neutral

B .
o072 4i(®). the oscillatory

nature of the system is highly sensitive to the magnitude of the neutral delay. Our criteria show

coefficient p,. As demonstrated in the definition of Q(t) =
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that even in the presence of strong damping r(t), oscillation can be guaranteed if the forcing
terms ), q;(t), satisfy the limsup integral divergence condition.

6.3. Comparison with Existing Literature
Compared to the classical results for third-order equations (e.g., [5], [6]), our criteria:

1. Generalize to Fractional Orders: Our results remain valid for any a € (2,3],
effectively bridging the gap between integer-order and fractional-order models.

2. Optimize the Riccati Constant: Through the precise application of Young’s
inequality, we obtained the optimal constant (p + 1)P*! in the penalty term of the
integral condition, providing a sharper bound for testing oscillation compared to earlier
fractional Riccati techniques.

6.4. Numerical Insights from the Example
The illustrative example provided in Section 5 confirms that for a damped fractional system,

the choice of the weight function 7(t)is crucial. The divergence of the integral [ :—;{S ds, against

the convergence of the damping-related term proves that the proposed criteria are not only
theoretically sound but also practically applicable for detecting oscillation in complex
mechanical and biological models.

1. 7. Future Research Directions

While this paper provides robust criteria for the oscillation of equation (1), several avenues for
future research remain open:

1. Higher-Order Equations: This work focused on the case 2 < a < 3. Extending these
criteria to n — th order neutral fractional equations (n > 3) would be a valuable
contribution.

2. Non-Linear Neutral Terms: Investigating equations where the neutral term p(t)x(7(t))
is replaced by a non-linear function G (¢t, x(t(t))) could provide more realistic models for
complex physical systems.

3. Numerical Simulations: A promising next step is the development of efficient numerical
schemes to visualize the oscillatory trajectories of fractional neutral equations, providing a
computational verification of the theoretical limsup bounds.
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