تأثير الفطريات الجذرية وشاي الكمبوست على القمح تحت الإجهاد المائي
الكلمات المفتاحية:
القمح (Triticum aestivum)، الإجهاد المائي، الميكوريزا، شاي الكمبوست، النمو، المحصول ومكونات المحصول، التركيب الكيميائيالملخص
Wheat (Triticum aestivum L.) remains one of the world’s most vital cereal crops, providing a major share of daily caloric and protein intake for millions of people. As global population growth continues and food demand intensifies, enhancing wheat productivity under changing environmental conditions has become a central challenge for agricultural systems worldwide. Among the most critical pressures limiting wheat performance is water scarcity, a constraint that is expected to intensify under future climate scenarios. Reduced water availability disrupts photosynthesis, nutrient uptake, biomass accumulation, grain development, and ultimately yield. Consequently, developing sustainable strategies to mitigate water stress effects is essential for maintaining crop productivity and ensuring food security.
In recent years, biological approaches—particularly the use of arbuscular mycorrhizal fungi (AMF) and compost tea (CT)—have gained attention as promising tools for improving plant tolerance to abiotic stress. AMF form symbiotic associations with plant roots, enhancing water absorption, improving nutrient availability, stabilizing soil structure, and stimulating physiological mechanisms that support growth under drought conditions. Similarly, compost tea is rich in beneficial microorganisms and bioactive compounds that enhance soil fertility, promote nutrient cycling, stimulate root development, and strengthen plant resilience. When combined, AMF and compost tea may offer synergistic benefits that improve both vegetative growth and yield components, especially under limited irrigation.
The integration of these biostimulants aligns with modern sustainability approaches, which seek to reduce reliance on chemical fertilizers and enhance soil health through environmentally friendly practices. However, despite growing evidence supporting their individual benefits, limited research has examined their combined effects on wheat under varying levels of water stress. This knowledge gap is particularly relevant for semi-arid regions such as Libya, where agricultural production is frequently constrained by drought, poor soil fertility, and inefficient water use.
Therefore, the present study aims to evaluate the effects of different irrigation levels and combined AMF + compost tea inoculation rates on the growth, yield, and chemical composition of wheat cultivar “Sakha 93.” By assessing plant responses across multiple physiological and agronomic parameters, this research seeks to clarify the potential of biological amendments in improving wheat performance under water-limited conditions. The findings are expected to contribute valuable insights toward promoting sustainable wheat production practices in arid and semi-arid environments.
المراجع
A.O.A.C. (1990). Official Methods of Analysis. 15th Edition, Association of Official Analytical Chemist, Washington DC.
Abd El-Kreem, T. H. A. and Ahmed, E.G.G. (2013). Evaluation of four new bread wheat (Triticum aestivum L.) cultivars in sandy soils under different irrigation regimes and nitrogen fertilizer rates for yield and its components. Alex. J. Agric. Res., 58 (3): 241‐250.
Abid, M., Shao, Y., Liu, S., Wang, F., Gao, J., Jiang, D., Tian, Z. and Dai, T. (2017). Pre-drought priming sustains grain development under post-anthesis drought stress by regulating the growth hormones in winter wheat (Triticum aestivum L.). Planta, 246: 509–524.
Adhikary, S. (2012). Vermicompost, the story of organic gold: A review. Agric. Sci., 3(7): 905-917.
Agamy, R.A., Mohamed, G.F. and Rady, M.M. (2012). Influence of the application of fertilizer type on growth, yield, anatomical structure and some chemical components of wheat (Triticum aestivum L.) grown in newly reclaimed soil. Aust. J. Basic Appli. Sci., 6 (3): 561-570.
Ahmad, A., Aslam, Z., Javed, T., Hussain, S., Raza, A., Shabbir, R. and Tauseef, M. (2022). Screening of wheat (Triticum aestivum L.) genotypes for drought tolerance through agronomic and physiological response. Agron., 12(2): 287.
Ahmad, S., Ali, H., A. Ur Rehman, R. J. Z. Khan, W. Ahmad, Z. Fatima and Hasanuzzaman, M. (2015). Measuring leaf area of winter cereals by different techniques: A comparison. Pak. J. Life Soc. Sci. 13(2): 117-125.
Al-Ansari, N.S., Jawad, N., Adamo, N. and Sissakian, V. (2019). Water quality and its environ mental implications within Tigris and euphrates rivers. J. Earth Sci. Geotech. Eng., 9(4): 57–108.
Allahverdiyev, T., Jahangirov, A. and Huseynova, I. (2018). Dry matter remobilization, yield and yield components of durum (Triticum durum Desf.) and bread (Triticum aestivum L.) wheat genotypes under drought stress. Pak. J. Bot., 50(5): 1745-1751.
An, J., Zeng, T., Ji, C., de Graaf, S., Zheng, Z., Xiao, T.T., Limpens, E. and Pan, Z.A. (2019). Medicago truncatula SWEET transporter implicated in arbuscule maintenance during arbuscular mycorrhizal symbiosis. New Phytol., 224: 396–408.
Arzani, A. and Ashraf, M. (2017). Cultivated ancient wheats (Triticum spp.): A potential source of health‐beneficial food products. Comprehensive Rev.Food Sci. Food Saf., 16(3): 477-488.
Asseng, S. (2020). Wheat yield potential in controlled-environment vertical farms. Proc. Natl. Acad. Sci. 117, 19131–19135
Bisht, A., Lather, S., Goyal, P. and Garg, N. (2024). Molecular determinants and regulatory mechanisms of nutrient exchange between plant and AMF. In: Parihar, M., Rakshit, A., Adholeya, A., Chen, Y. (Eds.), Arbuscular mycorrhizal fungi in sustainable agriculture: nutrient and crop management. Springer, Singapore, 77–97.
Bonanomi, G., Idbella, A., Amoroso, G., Iacomino, G., Gherardelli, M., De Sio, A., Saccocci, F., Abd-ElGawad, A.M., Moreno, M. and Idbella, M. (2025). Agronomic impacts of chemically and microbiologically characterized compost tea in Mediterranean volcanic soils. Front. Plant Sci., 16: 1524884.
Chhabra, V., Sreethu, S., Kaur, G., Singh, A., Kaur, M., Siddiqui, M. H. and Gupta, R. K. (2025). Response of wheat crop to water logged conditions under different land configurations and nutrient management. Scientific Rep., 15(7168):1-11.
Copetta, A., Lingua, G. and Berta G. (2006). Efects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. J. Mycorrhiza, 16 (7): 485–494
Dal Cortivo, C., Barion, G., Ferrari, M., Visioli, G., Dramis, L., Panozzo, A. and Vamerali, T. (2018). Effects of field inoculation with VAM and bacteria consortia on root growth and nutrients uptake in common wheat. Sustain., 10(9): 3286.
Du, X. (2021). Raised bed planting reduces water logging and increases yield in wheat the following rice. Field Crops Res., 265: 108119
Duc, N.H. (2017). Impact of arbuscular mycorrhizal fungi on plant tolerance to some abiotic stresses and phytopathogens. PhD dissertation. Szent István University. Godollo. 122 p.
Ebmeyer, H., Fiedler-Wiechers, K. and Hoffmann, C.M. (2021). Drought tolerance of sugar beet – Evaluation of genotypic differences in yield potential and yield stability under varying environmental conditions. Eur. J. Agron., 125: 126262.
EL-Guibali, A. H. (2016). Effect of organic and mineral fertilization on wheat yield and quality. J. Soil Sci. and Agric. Eng., Mansoura Univ., 7 (11): 829- 836.
Elsayed, S., Ibrahim, H., Hussein, H., Elsherbiny, O., Elmetwalli, A.H., Moghanm, F.S., Ghoneim, A.M., Danish, S., Datta, R. and Gad, M. (2021). Assessment of water quality in lake Qaroun using ground-based remote sensing data and artificial neural networks. Water, 13:3094.
El-Seidy, E. H., Moussa, A. M., Abd El-Razek, U. A. and Al-Farouk, M. O. (2015). Effect of skipping irrigation and sowing methods on yield and its components of four bread wheat cultivars. J. Plant Prod.Mansoura Univ., 6 (4): 575 – 587.
El-Seidy, E.H., Morad, A. A., El Refaey, R.A. and El-Hadidy, N. K. (2017). Effect of nitrogen fertilizer levels on some wheat varieties belonging two species. Menoufia J. Plant Prod., 2: 207 – 217.
Elshamly, A.M. and Abaza, A.S.D. (2024). Precise partial root-zone irrigation technique and potassium-zinc fertigation management improve maize physio-biochemical responses, yield, and water use in arid climate. BMC Plant Biol., 24: 775.
Fall, A. F., Nakabonge, G., Ssekandi, J., Founoune-Mboup, H., Apori, S. O., Ndiaye, A., Badji, A. and Ngom, K. (2022). Roles of arbuscular mycorrhizal fungi on soil fertility: contribution in the improvement of physical, chemical, and biological properties of the soil. Front. Fungal Biol., 3: 723892.
Farrag, H. and Bakr, A. A. (2021). Biological reclamation of a calcareous sandy soil with improving wheat growth using farmyard manure, acid producing bacteria and yeast. SVU Int. J. Agric. Sci., 3(1): 53-71.
Fasani, E., Franceschi, C., Furini, A. and DalCorso, G. (2025). Effect of biostimulants combined with fertilization on yield and nutritional value of wheat crops. BMC Plant Biol., 25(736): 1-15.
Fazily, T., Thakral, S. K. and Dhaka, A. K. (2021). Effect of integrated nutrient management on growth, yield attributes and yield of wheat. Int. J. Adv. Agric. Sci. Techn., 8(1): 106-118.
Gebreel, M. (2020). Impact of water flow pattern at varying techniques on quantifying irrigation performance. Ph.D. Fac. Agric. Egypt: Al-Azhar Univ. Assiut.
Gholamhoseini, M., Ghalavand, A., Dolatabadian, A., Jamshidi, E. and Khodaei-Joghan, A. (2013). Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agric. Water Manag., 117: 106–114.
Guo, S., Xia, L., Xia, D., Li, M., Xu, W. and Liu, L. (2024). Enhancing plant resilience: arbuscular mycorrhizal fungi’s role in alleviating drought stress in vegetation concrete. Front. Plant. Sci., 15.
Habibzadeh, Y., Pirzad, A., Zardashti, M. R., Jalilian, J. and Eini, O. (2013). Effects of Arbuscular Mycorrhizal fungi on seed and protein yield under water-deficit stress in Mung Bean. Agron. J., 105: 79-84.
Hamani, A. K. M., Abubakar, S.A., Si, Z., Kama, R., Gao, Y. and Duan, A. (2023). Suitable split nitrogen application increases grain yield and photosynthetic capacity in drip-irrigated winter wheat (Triticum aestivum L.) under different water regimes in the North China Plain. Front. Plant Sci., 13: 1105006.
Hazzoumi, Z., Azaroual, S. E., El Mernissi, N., Zaroual, Y., Duponnois, R., Bouizgarne, B. and Kadmiri, I. M. (2022). Effect of arbuscular mycorrhizal fungi isolated from rock phosphate mine and agricultural soil on the improvement of wheat plant growth. Frontiers in Microb., 13: 881442.
Helaly, M.N., El-Hoseiny, H., El-Sheery, N.I., Rastogi, A. and Kalaji, H.M. (2017). Regulation and physiological role of silicon in alleviating stress of mango. Plant Physio. Biochem., 118: 31-44.
Hlisnikovský, L., Menˇsík, L., Barłog, P. and Kunzov´a, ´E. (2023). How weather and fertilization affected grain yield and stability of winter wheat in a long-term trial in the South Moravian region, Czech Republic, Agron., 13(9): 2293.
Huang, C., He, X., Shi, R., Zi, S., Xi, C., Li, X. and Liu, T. (2024). Effect of arbuscular mycorrhizal fungi and rock phosphate on growth, physiology, and biochemistry of carob under water stress and after rehydration in vermicompost-amended soil. Plos One, 19: e0294394.
Inamullah, Z.A., Swati, A. L. and Siraj-u-Din, M. (1999). Evaluation of lines for drought tolerance in wheat (Triticum aestivum L.). Scientific Khyber, 12(2): 39-48.
Jangir, C. K., Sangwan, P. S., Panghaal, D., Kumar, S., Meena, R. S., Bharti and Singh, N. (2024). Spatial variability and statistical analysis of soil properties in the rice wheat-based systems of North‒West India. Comm. Soil Sci. Plant Ana., 55(8): 1205-1223.
Jia, Q., Sun, L., Ali, S., Liu, D., Zhang, Y., Ren, X., Zhang, P. and Jia, Z. (2017). Deficit irrigation and planting patterns strategies to improve maize yield and water productivity at different plant densities in semi-arid regions. Scientific Rep., 7(1): 1-13
Kashyap, P., Sharma, I., Kashyap, S. and Agarwala, N. (2024). Arbuscular Mycorrhizal Fungi (AMF)-mediated control of foliar fungal diseases. In: Ahammed, G.J., Hajiboland, R. (Eds.), Arbuscular mycorrhizal fungi and higher plants. Springer, Singapore, pp. 193–223.
Kaur, G., Singh, I., Behl, R.K. and Dhankar, A. (2024). Effect of different integrated nutrient management approaches on growth, yield attributes and yield of wheat (Triticum aestivum L.) crop: a review. Asian J. Soil Sci. Plant Nutr., 10(1): 457- 468.
Khan, A.J., Azam, F., Ali, A., Tariq, M. and Amin, M. (2005). Inter-relationship and path co-efficient analysis for biometric traits in drought tolerant wheat (Triticum aestivum L.). Asian J. Plant Sci., 4(5): 540-543.
Khan, S., Naseer, M., Hayat, M., Zamir, S. W., Khan, F. S. and Shah, M. (2022). Transformers in vision: A survey. ACM computing surveys (CSUR). 54(10s): 1-41.
Khanzada, B. S., Ala, A., Ashraf, M. Y., Shirazi, M.U., Alam, S.M., Ansari, R., Ali, M., Ali, M., Mujataba, S.M. and Khan, M.A. (2001a). Effect of water stress on yield and yield components of different Guar (Cyamopsis tetragonaloba L.) genotypes. Pak. J. of Biol. Sci., 4(4): 371-374.
Kumar, P., Kumar, A., Kumar, R. and Sewhag, M. (2022). Productivity and input efficiencies of FIRB planted wheat as influenced by nitrogen levels under deficit irrigation. J Soil Water Conserv., 21(3): 318-325.
Kurylenko, А., Kurylenko, O., Kuchmenko, О. and Havii, V. (2021). Influence of pre-sowing treatment of seeds with compositions of metabolically active substances on the content of photosynthetic pigments in the leaves of winter Rye plants of synthetic 38 and zabava varieties at different stages of ontogenesis. East Eur. Scientific J., 4(75): 11-16.
Lamlom, S. F., Abdelghany, A. M., Farouk, A. S., Alwakel, E. S., Makled, K. M., Bukhari, N. A. and Shehab, A. A. (2025). Biochemical and yield response of spring wheat to drought stress through gibberellic and abscisic acids. BMC Plant Biol., 25(1): 5.
Lamlom, S.F., Irshad, A. and Mosa, W. F. (2023). The biological and biochemical composition of wheat (Triticum aestivum) as affected by the bio and organic fertilizers. BMC Plant Biol., 23(1): 111.
Lenoir, I., Fontaine, J. and Loun` es-Hadj, S.A. (2016). Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. Phytochemistry 123, 4–15.
Levidow L, Zaccaria D, Maia R, Vivas E, Todorovic M, Scardigno A. (2014). Improving water-efficient irrigation: prospects and difficulties of innovative practices. Agric Water Manag., 146: 84–94.
Li, F., Zhou, M., Shao, J., Chen, Z., Wei, X. and Yang, J. (2020) Maize, wheat and rice production potential changes in China under the background of climate change. Agric. Syst., 182: 102853
Li, L., Zhang, H., Tang, M. and Chen, H. (2021). Nutrient uptake and distribution in mycorrhizal cuttings of Populus canadensis ‘Neva’under drought stress. J. Soil Sci. Plant Nutr., 21: 2310–2324.
Liang, Z., Li, J., Cao, X., Tang, Y., Mo, F., Nangia, V. and Liu, Y. (2024). Responses of wheat nitrogen uptake and utilization, rhizosphere bacterial composition and nitrogen-cycling functional genes to nitrogen application rate, planting density and their interactions. Appli. Soil Ecol., 193: 105-143.
Liu, R. and Chen, Y. (2024). Mycorrhizal symbiosis: evolution, opportunities, challenges, and prospects. In: Parihar, M., Rakshit, A., Adholeya, A., Chen, Y. (Eds.), Arbuscular mycorrhizal fungi in sustainable agriculture: inoculum production and application. Springer, Singapore, pp. 1–35.
Ma, S., Liu, S., Gao, Z., Wang, X., Ma, S. and Wang, S. (2024). Water deficit diagnosis of winter wheat based on thermal infrared imaging. Plants, 13: 361
Ma, Y., Zhang, H., Wang, D., Guo, X., Yang, T., Xiang, X., Walder, F. and Chu, H. (2021). Differential responses of arbuscular mycorrhizal fungal communities to long-term fertilization in the wheat rhizosphere and root endosphere. Appli. Environ. Microb., 87(17): 00349-00321.
Maheshwari, R.K., Singh, A.K., Gaddipati, J. and Srimal, R.C. (2006). Multiple biological activities of curcumin: a short review. Life Sci., 78: 2081–2087.
Malik, M.A and Hassan, F. (2002). Response of wheat genotypes on suppression of weeds under rainfed conditions. Pak. J. Agri., Agril. Engg. Vet. Sci., 18(1-2): 18-22.
Malik, N. S. A., Alberto, N. and McKeever, L. C. (2017). mycorrhizal inoculation increases growth and induces changes in specific polyphenol levels in olive saplings. J. Agric. Sci., 9(2): 1-9.
Mandic, V., Krnjaja, V., Tomic, Z., Bijelic, Z., Simic, A., Muslic, D.R. and Gogic, M. (2015). Nitrogen fertilizer influence on wheat yield and use efficiency under different environmental conditions. Chilean J. Agric. Res., 75(1): 92-97.
Manoj, P., Kumar, C., Ram, H., Asha, K., Gopal, T. and Kiran, R. (2022). Role of AMF in growth promotion of high-value crops, 121-144.
Martin, F.M. and van der Heijden, M.G.A. (2024). The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application. New Phytol., 242: 1486–1506.
Mengel, K. and Kirkby, E.A. (2001). Principles of Plant Nutrition. 5th Ed. Dordrecht, Netherlands: Academic Publishers, Kluwer, 849.
Metwally, A., Azooz, M., Nafady, N. and El-Enany, A. (2019). Arbuscual mycorrhizal symbiosis alleviates drought stress imposed on wheat plants (Triticum aestivum L.). Appl. Ecol. Environ. Res., 17: 13713–13727.
Moiseev A. (2023). Role of endophytic microorganisms in phosphate solubilization and phytoremediation of degraded soils. J. Microorg. Sustain. Plant Microbiome Plant Prod. Sustain. Agric., 387- 400
Muchhadiya, R., Thanki, R., Sakarvadia, H. and Muchhadiya, P. (2021). Effect of NPK levels and city compost on soil chemical and biological properties, yield and quality of wheat (Triticum aestivum L.) under system of wheat intensification (SWI). Pharma innov., 10(11):1230 1235.
Nader, A.A., Hauka, F.I.A., Afify, A.H. and El-Sawah, A.M. (2024). Drought-tolerant bacteria and arbuscular mycorrhizal fungi mitigate the detrimental effects of drought stress induced by withholding irrigation at critical growth stages of soybean (Glycine max, L.). Microorg., 12, 1123.
Nkebiwe, P. M., Stevens Lekfeldt, J. D., Symanczik, S., Thonar, C., Mäder, P., Bar-Tal, A. and de Neergaard, A. (2024). Effectiveness of bioeffectors on maize, wheat and tomato performance and phosphorus acquisition from greenhouse to field scales in Europe and Israel: a meta-analysis. Fronti. Plant Sci., 15: 1333249.
Nyaupane, S., Poudel, M. R., Panthi, B., Dhakal, A., Paudel, H. and Bhandari, R. (2024). Drought stress effect, tolerance, and management in wheat–a review. Cogent Food & Agric., 10(1): 2296094.
Ochoa-Noriega, C.A., Aznar-S´anchez, J.A., Velasco-Mu˜ noz, J.F. and ´Alvarez-Bejar, A. (2020). The use of water in agriculture in Mexico and its sustainable management: a bibliometric review. Agron., 10: 1957.
Omara, A.E., Hadifa, A. and Ali, D.F. (2022). The integration efficacy between beneficial bacteria and compost tea on soil biological activities, growth and yield of rice under drought stress conditions. J. Agric. Chem. Biotech., 13: 39–49.
Osman, E. A. M. and Nor Eldein, G. A. (2017). Response of three bread wheat to nitrogen fertilizer with or without ascorbic acid grown on a clay soil. J. Soil Sci. Agric. Eng., Mansoura Univ., 8 (6): 267-274.
Parihar, M., Rakshit, A., Meena, V. S., Gupta, V. K., Rana, K., Choudhary, M., Tiwari, G., Mishra, P. K., Pattanayak, A. and Bisht, J. K. (2020). The potential of arbuscular mycorrhizal fungi in C cycling: a review. Arch. Microb., 202: 1581-1596.
Pavithra, D. and Yapa, N. (2018). Arbuscular mycorrhizal fungi inoculation enhances drought stress tolerance of plants. Groundwater for Sustain. Devel., 7: 490-494.
Peng, Z., Zulfiqar, T., Yang, H., Wang, M. and Zhang, F. (2024). Effect of Arbuscular Mycorrhizal Fungi (AMF) on photosynthetic characteristics of cotton seedlings under saline-alkali stress. Sci. Rep., 14: 8633.
Perotto, S. and Balestrini, R. (2024). At the core of the endomycorrhizal symbioses: intracellular fungal structures in orchid and arbuscular mycorrhiza. New Phytol., 242: 1408–1416.
Pezeshkpour, P., Ardakani, M., Paknejad, F. and Vazaan, S. (2014). Application effect of vermicompost, mycorrhizal symbiosis and biophosphate soulbilizing on physiological traits and yield of chickpea, 6 (23):53-65
Pons, C. and Müller, C. (2022). Impacts of drought stress and mycorrhizal inoculation on the performance of two spring wheat cultivars. Plants, 11, 2187.
Posta, K. and Duc, N.H. (2020). Benefits of Arbuscular Mycorrhizal Fungi Application to Crop Production under Water Scarcity. Drought Detect Solut
Qadir G., Mohammad, S. and Cheema, M. A. (1999). Effect of water stress on growth and yield performance of four wheat cultivars. Pak. J. Biol. Sci., 2(1): 236-239.
Ramadas, S., Kiran, K.T.M. and Pratap, S. G. (2020). Wheat Production in India: Trends and Prospects. Rec. Adv. Grain Crops Res., 1-18.
Schrader, J., Shi, P., Royer, D. L., Peppe, D. J., Gallagher, R. V., Li, Y. and Wright, I. J. (2021). Leaf size estimation based on leaf length, width and shape. Ann. Bot., 128(4): 395-406.
Selim, D.A.F.H., Nassar, R.M.A., Boghdady, M.S. and Bonfill, M. (2019). Physiological and anatomical studies of two wheat cultivars irrigated with magnetic water under drought stress conditions. Plant Physiol. Biochem., 135:480-488.
Sharma, J., Kumar, S., Kumar, N., Yadav, N., Khyalia, P. and Sharma, A. (2024a). Evaluation of yield and quality attributes of barley cultivars with foliar spray of glycine betaine under lead toxicity. Cereal Res. Comm. https://doi.
Sharma, J., Kumar, S., Kumar, V., Singh, P., Khyalia, P., Saini, S., Kumar, A. and Sharma, A. (2024b). Stress-mitigating behavior of glycine betaine to enhance growth performance by suppressing the oxidative stress in Pbstressed barley genotypes. Environ. Sci. Poll. Res., 31(5): 7498-7513.
Sharma, J., Kumar, S., Kumar, V., Singh, P., Khyalia, P., Verma, S. and Sharma, A. (2023). Foliar application of glycine betaine to ameliorate lead toxicity in barley plants by modulating antioxidant enzyme activity and biochemical parameters. Environ. Res. Comm., 5(7): 075002.
Sharma, N., Yadav, K. and Aggarwal, A. (2017). Role of potassium and arbuscular mycorrhizal fungi in alleviation of water stress on Vigna mungo. Environ. Exp. Biol., 15: 15-24.
Sharma, R.C. and Smith, E.L. (1986). Selection for high and low harvest index in three winter wheat populations 1. Crop Sci., 26(6): 1147-1150.
Shaukat, M., Abbasi, A., Ramzan, K., Hina, A., Memon, S. Q., Maqsood, Z. and Lamlom, S. F. (2024). Ameliorating heat stressed conditions in wheat by altering its physiological and phenotypic traits associated with varying nitrogen levels. Notulae Botanicae Horti. Agrobotanici Cluj Napoca, 52(1): 13471-13471.
Shewry, P.R., America, A.H.P., Lovegrove, A., Wood, A.J., Plummer, A., Evans, J., Van Den Broeck, H.C., Gilissen, L., Mumm, R., Ward, J.L., Proos, Z., Kuiper, P., Longin, C.F.H., Andersson, A.A.M., Van Straaten, J.P., Jonkers, D. and Brouns, F. (2022). Comparative compositions of metabolites and dietary fibre components in doughs and breads produced from bread wheat, emmer and spelt and using yeast and sourdough processes. Food Chem., 374: 131710.
Shishehbor, M., Madani, H. and Ardakani, M. R. (2013). Effect of vermicompost and biofertilizers on yield and yield components of common millet (Panicum miliaceum). Ann. Biol. Res., 4(2): 174-180
Singh, W., Mor, V., Singh, M. and Pradeep, K. A. (2025). Sustainable study of nutrient management using different combinations of organic and inorganic fertilizers for enhancing Wheat productivity. Egypt. J. Bot., 65(1): 232-240.
Snedecor, G.W. and Cochran, W.G. (1990). Statistical Methods. 8th Edition, Iowa State University Press, Ames.
Solangi, A. H., Solongi, N.U., Jatoi, W. A., Solangi, M. K., Solangi, S. K., Memom, A. Z. and Soomro, E. L. (2021). Drought tolerance indices of wheat (Triticum aestivum L.) genotypes under water deficit conditions. Plant Cell Biotechnol Mol. Biol., 22(29–30): 1-19.
Somoza, S.C., Bonfante, P. and Giovannetti, M. (2024). Breaking barriers: improving time and space resolution of arbuscular mycorrhizal symbiosis with single-cell sequencing approaches. Biol. Direct., 1-19.
Tang, H., Hassan, M.U., Feng, L., Nawaz, M., Shah, A.N., Qari, S.H., Liu, Y. and Miao, J. (2022). The critical role of arbuscular mycorrhizal fungi to improve drought tolerance and nitrogen use efficiency in crops. Front. Plant Sci., 13: 919166.
Tian, H., Jia, Z., Liu, W., Wei, X., Wang, H., Bao, G., Li, J. and Zhou, Q. (2023). Effects of Arbuscular Mycorrhizal fungi on growth and nutrient accumulation of oat under drought conditions. Agron., 13(2580):1-13.
Tompkins, D.K., Fowler, D.B. and Wright, A.T. (1991). Water use by no till winter wheat influence of seed rate and row spacing. Agron. J., 766-769.
Wahid, F., Fahad, S., Danish, S., Adnan, M., Yue, Z., Saud, S., Siddiqui, M. H., Brtnicky, M., Hammerschmiedt, T. and Datta, R. (2020). Sustainable management with mycorrhizae and phosphate solubilizing bacteria for enhanced phosphorus uptake in calcareous soils. Agric., 10(8): 334.
Xin, Y., Fan, Y., Babalola, O. O., Zhang, X. and Yang, W. (2022). Legacy effects of biochar and compost addition on arbuscular mycorrhizal fungal community and co-occurrence network in black soil. Microorg., 10(11): 2137.
Yan, B., Fu, P., Lu, J., Ma, F., Sun, X. and Fang, Y. (2022). Regulated deficit irrigation: an effective way to solve the shortage of agricultural water for horticulture. Stress Biol., 2: 1-28.
Yan, F., Liu, X., Bai, W., Fan, J., Zhang, F., Xiang, Y., Hou, X., Pei, S., Dai, Y., Zeng, H. and Wang, Y. (2022). Multi-objective optimization of water and nitrogen regimes for drip-fertigated sugar beet in a desert climate. Field Crops Res., 288: 108703.
Yan, S., Wu, Y., Fan, J., Zhang, F., Qiang, S., Zheng, J., Xiang, Y., Guo, J. and Zou, H. (2019). Effects of water and fertilizer management on grain filling characteristics, grain weight and productivity of drip-fertigated winter wheat. Agric. Water Manag., 213: 983–995.
Yavas, I. and Emek, Y. (2021). The positive influence of arbuscular mycorrhizal fungi on wheat growth and physiology under drought conditions. Eur. J. Sci. Tech., (31): 409-419.
Yadava, U.L. (1986). A rapid and nondestructive method to determine chlorophyll in intact leaves. HortScience 21:1449–1450.
