The effect of lime, GGBS, and Metakaolin on sulfate soil stabilization
DOI:
https://doi.org/10.61952/jlabw.v1i4.232Keywords:
swelling, strength, sulfate-bearing soil, expansion mineral, gypsumAbstract
Treatment of sulfate-bearing soil with lime has a negative effect due to the formation of an expansive mineral (ettringite), posing a challenge for geotechnical engineers due to the considerable damage and unpredictable deformation associated with heaving. This challenge includes multi-hazard environmental and economic effects on various civil engineering structures. This, therefore, led to this study, which focuses on the short and long-term curing (7, 28, and 90 days) of sulfate-bearing soil treated with lime (L), Ground Granulated Blast-Furnace Slag (GGBS) and Metakaolin (MK). Various laboratory tests were performed, including unconfined compression strength (UCS), and linear expansion, to investigate the effect of different blended proportions of L, GGBS and MK. The results showed that soil samples treated with 5L-5MK exhibit lower swelling percentage (0.04%) than those treated with 10% of lime, 5L-5GGBS, and 5L-2.5MK-2.5GGBS after 7 days of curing. Meanwhile, soil samples stabilized with 10% of (L-GGBS) exhibited higher strength performance after 90 days of curing (3315.67 kN/mm2) compared to those stabilized with 10% of lime. Overall, the test results proved the potential of L-MK, L-GGBS, and L-MK-GGBS as effective stabilizers for sulfate-bearing soil.
References
Chemeda, Y.C.; Deneele, D.; Ouvrard, G. Short-term lime solution-kaolinite interfacial chemistry and its effect on long-term pozzolanic activity. Applied Clay Science 2018, 161, 419–426, doi:10.1016/j.clay.2018.05.005.
Aldaood, A.; Bouasker, M. Mechanical Behavior of Gypseous Soil Treated with Lime. Geotechnical and Geological Engineering 2020, doi:10.1007/s10706-020-01517-w.
Phanikumar, B.R.; Singla, R. Swell-consolidation characteristics of fi bre-reinforced expansive soils. Soils and Foundations 2016, 56, 138–143, doi:10.1016/j.sandf.2016.01.011.
Phanikumar, B.R.; Nagaraju, T. V. Effect of Fly Ash and Rice Husk Ash on Index and Engineering Properties of Expansive Clays. Geotechnical and Geological Engineering 2018, 36, 3425–3436, doi:10.1007/s10706-018-0544-5.
Hozatlıoglu, D.T.; Yılmaz, I. Shallow mixing and column performances of lime , fly ash and gypsum on the stabilization of swelling soils. Engineering Geology 2021, 280, doi:10.1016/j.enggeo.2020.105931.
Cai, G.; Liu, S.; Du, G.; Chen, Z.; Zheng, X.; Li, J. Mechanical performances and microstructural characteristics of reactive MgO-carbonated silt subjected to freezing-thawing cycles. Journal of Rock Mechanics and Geotechnical Engineering 2021, 13, 875–884, doi:10.1016/j.jrmge.2021.03.005.
Sindhu, A.R.; Minukrishna, P.; Abraham, B.M. Experimental Study on the Impact of Type of Sulphate in Lime Stabilised Clays. In Proceedings of the International Web Conference in Civil Engineering for a Sustainable Planet; AIJR Publisher: India in, 2021.
Caselles, L.D. Stabilisation des sulfates et du molybdène par des liants alternatifs, University of Toulouse, 2020.
Khaled Ehwailat; Mansour Ebailila; Alissawi Asbeiai; Muftah Aljoat; Saleh Ben Lamma The Effect of Variation in Water Compaction and Blending Approach on the Performance of Gypsum-Based Soil Stabilized with Cement and Silica Fume . المجلة الأفروآسيوية للبحث العلمي (AAJSR) 2025, 3, 429–437.
Li, W.; Yi, Y.; Puppala, A.J. Suppressing Ettringite-Induced Swelling of Gypseous Soil by Using Magnesia-Activated Ground Granulated Blast-Furnace Slag. Journal of Geotechnical and Geoenvironmental Engineering 2020, 146, 1–6, doi:10.1061/(ASCE)GT.1943-5606.0002292.
Ehwailat, K.I.A.; Ismail, M.A.M.; Ezreig, A.M.A. Novel Approach to the Treatment of Gypseous Soil-Induced Ettringite Using Blends of Non-Calcium-Based Stabilizer, Ground Granulated Blast-Furnace Slag, and Metakaolin. Materials 2021, 14, 25–27, doi:10.3390/ma14185198.
Raja, P.S.; Thyagaraj, T. Significance of compaction time delay on compaction and strength characteristics of sulfate resistant cement-treated expansive soil. Journal of Rock Mechanics and Geotechnical Engineering 2021, doi:10.1016/j.jrmge.2021.03.003.
Ebailila, M.; Kinuthia, J.; Oti, J. Role of Gypsum Content on the Long-Term Performance of Lime-Stabilised Soil. Materials 2022, 1–14, doi:https://doi.org/10.3390/ ma15155099.
Seco, A.; Miqueleiz, L.; Prieto, E.; Marcelino, S.; García, B.; Urmeneta, P. Sulfate soils stabilization with magnesium-based binders. Applied Clay Science 2017, 135, 457–464, doi:10.1016/j.clay.2016.10.033.
N Alsharaa, N Saleh, M Ebailila, A.M. The role of moisture content, mixing method and sample size on the swelling of sulfate soil stabilised with lime-silica fume blend; 2023; Vol. 16; ISBN 0123456789.
Ebailila, M.; Kinuthia, J.; Oti, J.; Muhmed, A. A comparative study on the long-term microstructure of soil stabilisation with calcium and magnesium-based binders. Journal of Bani Waleed University for humanities and Applied Science 2023, doi:10.58916/jhas.v8i3.169.
Eyo, E.U.; Abbey, S.J.; Ngambi, S.; Ganjian, E.; Coakley, E. Incorporation of a nanotechnology-based product in cementitious binders for sustainable mitigation of sulphate-induced heaving of stabilised soils. Engineering Science and Technology, an International Journal 2020, doi:10.1016/j.jestch.2020.09.002.
Khadka, S.D.; Jayawickrama, P.W.; Senadheera, S.; Segvic, B. Stabilization of highly expansive soils containing sulfate using metakaolin and fly ash based geopolymer modified with lime and gypsum. Transportation Geotechnics 2020, 23, 100327, doi:10.1016/j.trgeo.2020.100327.
Bazyar, M.H.; Ebrahimi, M.; Lenjani, M.Z.; Makarchian, M. The Effect of Rice Husk Ash on Mechanical Properties of Clayey Soils Stabilized with Lime in the Presence of Sulphate. Journal of Engineering Geology 2017, 11, 23–52.
Perlot, C.; Marcelino-s, S.; Prieto, E. Experimental Study of the Valorization of Sulfate Soils for Use as Construction Material. Sustainability 2022, 14, 1–11.
Rajasekaran, G. Sulphate attack and ettringite formation in the lime and cement stabilized marine clays. 2005, 32, 1133–1159, doi:10.1016/j.oceaneng.2004.08.012.
Pavoine, A.; Brunetaud, X.; Divet, L. The impact of cement parameters on Delayed Ettringite Formation. Cement and Concrete Composites 2012, 34, 521–528, doi:10.1016/j.cemconcomp.2011.11.012.
Ehwailat, K.I.A.; Ismail, M.A.M.; Ezreig, A.M.A. Ettringite Formation and Stabilization Methods of Sulfate-Bearing Soil: A State-of-the-Art Review. Indian Geotechnical Journal 2022, 52, 927–941, doi:10.1007/s40098-022-00619-x.
Ouhadi, V.R.; Yong, R.N. The role of clay fractions of marly soils on their post stabilization failure. Engineering geology 2003, 70, 365–375.
Ouhadi, V.R.; Yong, R.N. Ettringite formation and behaviour in clayey soils. Applied Clay Science 2008, 42, 258–265.
Min, Y.; Jueshi, Q.; Ying, P. Activation of fly ash–lime systems using calcined phosphogypsum. Construction and building materials 2008, 22, 1004–1008.
Jin, F.; Al-Tabbaa, A. Evaluation of novel reactive MgO activated slag binder for the immobilisation of lead and zinc. Chemosphere 2014, 117, 285–294, doi:10.1016/j.chemosphere.2014.07.027.
Cai, G.H.; Liu, S.Y.; Zheng, X. Influence of drying-wetting cycles on engineering properties of carbonated silt admixed with reactive MgO. Construction and Building Materials 2019, 204, 84–93, doi:10.1016/j.conbuildmat.2019.01.125.
Yi, Y.; Liska, M.; Al-Tabbaa, A. Initial investigation into the use of GGBS-MgO in soil stabilisation. Grouting and Deep Mixing 2012, 444–453.
Yi, Y.; Liska, M.; Jin, F.; Al-tabbaa, A. Mechanism of reactive magnesia – ground granulated blastfurnace slag (GGBS) soil stabilization. Canadian Geotechnical Journal 2016, 55, 773–782, doi:10.1139/cgj-2015-0183.
Ehwailat, K.I.A.; Ismail, M.A.M.; Ezreig, A.M.A. Novel Approach for Suppression of Ettringite Formation in Sulfate-Bearing Soil Using Blends of Nano-Magnesium Oxide, Ground Granulated Blast-Furnace Slag and Rice Husk Ash. applied sciences Article 2021, 11, 23–26, doi:10.3390/app11146618.
ASTM C618-05., (AASHTOM295) Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for use in Concrete; ASTM International, West Conshohocken, 2005;
AASHTO Standard Specifications for Transportation Materials and Methods of Sampling and Testing; American Association for State Highway and Transportation Officials, 14th Ed. Washington, D.C, 1996;
Bayang, F.; Academy, N.D.; Garba, H.; Academy, N.D.; Sani, J.E.; Academy, N.D. Laboratory Assessment of Metakaolin Effect on the Volumetric Shrinkage of Black Cotton Soil for Flexible Pavement Construction. Civil and Environmental Research 2017, 9, 16–29.
Billong, N.; Kinuthia, J.; Oti, J.; Melo, U.C. Performance of sodium silicate free geopolymers from metakaolin (MK) and Rice Husk Ash (RHA): Effect on tensile strength and microstructure. Construction and Building Materials 2018, 189, 307–313, doi:10.1016/j.conbuildmat.2018.09.001.
Thankam, G.L.; Thurvas Renganathan, N. Ideal supplementary cementing material – Metakaolin: A review. International Review of Applied Sciences and Engineering 2020, 11, 58–65, doi:10.1556/1848.2020.00008.
Seco, A.; del Castillo, J.M.; Espuelas, S.; Marcelino, S.; García, B. Sulphate soil stabilisation with magnesium binders for road subgrade construction. International Journal of Pavement Engineering 2020, 1–11, doi:10.1080/10298436.2020.1825711.
Pai, R.R.; Patel, S.; Bakare, M.D. Applicability of Utilizing Stabilized Native Soil as a Subbase Course in Flexible Pavement. Indian Geotechnical Journal 2020, 50, 289–299, doi:10.1007/s40098-020-00432-4.
Truong, S.B.; Thi, N.N.; Thanh, D.N. An Experimental Study on Unconfined Compressive Strength of Soft Soil-Cement Mixtures with or without GGBFS in the Coastal Area of Vietnam. Advances in Civil Engineering 2020, 2020, 20–25.
Pal, S.C.; Mukherjee, A.; Pathak, S.R. Investigation of hydraulic activity of ground granulated blast furnace slag in concrete. Cement and Concrete Research 2003, 33, 1481–1486, doi:10.1016/S0008-8846(03)00062-0.
VÁCLAVÍK, V.; DIRNER, V.; DVORSKÝ, T.; Daxner, J. The use of blast furnace slag. Metalurgija 2012, 51, 461–464.
Yu, B.W.; Du, Y.J.; Jin, F.; Liu, C.Y. Multiscale study of sodium sulfate soaking durability of low plastic clay stabilized by reactive magnesia-activated ground granulated blast-furnace slag. Journal of Materials in Civil Engineering 2016, 28, 1–10, doi:10.1061/(ASCE)MT.1943-5533.0001517.
Ehwailat, K.; Ebailila, M.; Ezreig, A.; Aljoat, M. Optimization of Cement-Silica Fume Blends for The Suppression of Sulphate Soil Swelling. The North African Journal of Scientific Publishing (NAJSP) 2025, 3, 227–235.
British Standards Institution BS EN ISO 17892-4:2016: GGeotechnical investigation and testing. Laboratory testing of soil Part 4: Determination of particle size distribution; BSI Standards Ltd: London, UK, 2014;
Wu, Z.; Deng, Y.; Liu, S.; Liu, Q.; Chen, Y.; Zha, F. Strength and micro-structure evolution of compacted soils modified by admixtures of cement and metakaolin. Applied Clay Science 2016, 127–128, 44–51, doi:10.1016/j.clay.2016.03.040.
Sazali, N.; Harun, Z.; Tijani Abdullahi; Azhar, F.H.; Sazali, N. Revolution of Malaysia’s Kaolin to Metakaolin towards various application: A Mini Review. JOURNAL OF MODERN MANUFACTURING SYSTEMS AND TECHNOLOGY 2019, 4, 722–728, doi:10.1016/j.eng.2018.07.020.
He, J.; Li, Z.X.; Wang, X.Q.; Shi, X.K. Durability of Soft Soil Treated with Soda Residue and Ground Granulated Blast Furnace Slag in a Soaking Environment. Journal of Materials in Civil Engineering 2020, 32, 1–10, doi:10.1061/(ASCE)MT.1943-5533.0003033.
National Academies of Sciences, E.A.M. Recommended Practice for Stabilization of Sulfate-Rich Subgrade Soils; The National Academies Press: Washington, 2009; ISBN 9780309429825.
Puppala, A.J.; Talluri, N.; Chittoori, B.C.S. Calcium-based stabiliser treatment of sulfate-bearing soils. Proceedings of the Institution of Civil Engineers - Ground Improvement 2014, 167, 162–172, doi:10.1680/grim.13.00008.
Talluri, N.; Puppala, A.J.; Congress, S.S.C.; Banerjee, A. Experimental Studies and Modeling of High Sulfate Soil Stabilization. Journal of Geotechnical & Geoenvironmental Engineering 2020, 146, 1-16 (in-press), doi:10.1061/(ASCE)GT.1943-5606.0002240.
Chegenizadeh, A.; Keramatikerman, M.; Miceli, S.; Nikraz, H. Investigation on Recycled Sawdust in Controlling Sulphate Attack in Cemented Clay. Applied Sciences 2020, 10, 20–21, doi:10.3390/app10041441.
Ebailila, M.; Kinuthia, J.; Oti, J. Suppression of Sulfate-Induced Expansion with Lime–Silica Fume Blends. Materials 2022, 8, 2–17, doi:10.3390/ ma15082821 Academic.
British Standards Institution BS EN 13286-2:2010: Unbound and hydraulically bound mixtures Part 2 : Test methods for laboratory reference density and water content — Proctor compaction; BSI Standards Ltd: London, UK, 2012;
British Standards Institution BS EN 13286-49:2004: Unbound and hydraulically bound mixtures Accelerated swelling test for soil treated by lime and/or hydraulic binder; BSI Standards Ltd: London, UK, 2004;
British Standards Institution BS EN ISO 17892‑7:2018: Geotechnical investigation and testing. Laboratory testing of soil Part 7 :Unconfined compression test strength; BSI Standards Ltd: London, UK, 2018;
Muhammad, A.; Polytechnic, K.S.; Yusuf, A. Assessment of Lateritic Soil stabilized using Metakaolin. Journal of Geotechnical Studies 2021, doi:10.5281/zenodo.3676443.
Jang, J.; Puppala, A.J.; Biswas, N.; Chakraborty, S.; Radovic, M. Utilization of Metakaolin-Based Geopolymers for Stabilization of Sulfate-Rich Expansive Soils. In Proceedings of the Geo-Congress 2022 GSP 331; 2022; pp. 222–231.
Darsi, B.P.; Molugaram, K.; Madiraju, V.S.H. Subgrade Black Cotton Soil Stabilization Using Ground Granulated Blast-Furnace Slag (GGBS) and Lime, an Inorganic Mineral. Environmental Sciences Proceedings 2021, 1–15, doi:10.3390/ iecms2021-09390 Academic.
Abbey, S.J.; Eyo, E.U.; Jeremiah, J.J. Experimental Study on Early Age Characteristics of Lime-GGBS-Treated Gypseous Clays under Wet – Dry Cycles. Geotechnics 2021, 402–415, doi:10.3390/ geotechnics1020019 Academic.
Al-dakheeli, H.; Asce, S.M.; Bulut, R.; Asce, M.; Garland, G.S.; Clarke, C.R. Utilization of Blast-Furnace Slag as a Standalone Stabilizer for High Sulfate-Bearing Soils. Journal of Materials in Civil Engineering 2021, 33, 1–10, doi:10.1061/(ASCE)MT.1943-5533.0003880.
Devi, A.; Bishnoi, M. Strength Parameter of Rigid Pavement by Replacing Cement with Metakaolin, GGBS and Silica Fumes Article. Journal of Xidian University 2020, 14, doi:10.37896/jxu14.9/140.
Mansour Ebailila; Khaled Ehwailat; Saleh Ben Lamma; Muftah Aljoat Engineering properties of concrete made with GGBS and pulverised fuel ash . African Journal of Advanced Pure and Applied Sciences (AJAPAS) 2025, 4, 234–244.
